Supporting Information

3D-2D Heterostructure of PdRu/NiZn Oxyphosphides with

Improved Durability for Electrocatalytic Methanol and

Ethanol Oxidation

Hui Xu, Pingping Song, Yangping Zhang, and Yukou Du*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: duyk@suda.edu.cn (Y. Du).

Figures and Tables

Figure S1 (a and b) Representative TEM images of 3D PdRu NFs with different magnifications and its (c) XRD patterns.

Figure S2 Representative (a) HRTEM images and (b) SAED patterns of 3D PdRu NFs.

Figure S3 HAADF-STEM image and element mapping patterns of a single PdRu nanoflower.

Figure S4 CV (1st, 400th, 600th, 800th, and 1000th cycle) of (a) 3D-2D nanohybrids, (b) 3D PdRu NFs, and (c) commercial Pd/C for EOR at 50 mV s⁻¹ in 1.0 M KOH + 1.0 M CH₃CH₂OH, respectively. Corresponding histograms for retained specific and mass activities of (d) 3D-2D nanohybrids, (e) 3D PdRu NFs, and (f) commercial Pd/C for EOR durability test.

Figure S5 Representative TEM images of 3D PdRu NFs with different magnifications after long-term stability tests.

Figure S6 Typical TEM images of commercial Pd/C catalysts (a and b) before and (c and d) after long-term stability tests.

Figure S7 CA curves of 3D-2D nanohybrids, 3D PdRu NFs, and commercial Pd/C catalysts towards (a) MOR and (b) EOR at the fixed potentials of -0.3 and -0.15 V, respectively. (c) The corresponding histograms of the retained mass activities of 3D-2D nanohybrids, 3D PdRu NFs, and commercial Pd/C catalysts.

Catalysts	Peaks currents from		Electrolyte	Cycling stability	References
	J _m (A/mg)	J_s (mA/cm ²)			
3D-2D hybrids	1.7	4.5	1.0 M KOH + 1.0 M methanol	72.4 % activity after 1000 cycles	This work
Pd ₃ Ru ₁ P _{1.5} NCs	1.26	NA	1.0 M KOH + 1.0 M methanol	56 % activity after 1000 cycles	Int. J. Hydrogen Energy 2017 , <i>42</i> , 11229-11238
PtNi Concave Nanoctahedra	0.44	1.55	0.1 M HClO ₄ + 1 M methanol	NA	Angew. Chem. Int. Ed. 2012 , <i>51</i> , 12524-12528
PtRu/G ₈₅ (CN) ₁₅	0.91	NA	$\begin{array}{c} 0.1 \text{ M } \text{H}_2 \text{SO}_4 \\ + 0.5 \text{ M} \\ \text{methanol} \end{array}$	63.5 % activity after 1000 cycles	Carbon, 2015 , <i>93</i> , 105-115
Fe ₂₈ Pt ₃₈ Pd ₃₄ NWs	0.48		0.1M HClO ₄ + 0.2 M methanol	NA	J. Am. Chem. Soc. 2012, <i>51</i> , 15354- 15357
$Pt_{0.3}Ru_{0.6}Pd_{0.1}$	1.04	1.56	1 M KOH + 1 M methanol	48 % activity after 500 cycles	New J. Chem. 2017 , <i>41</i> , 3048- 3054
PtNi/C	1.20		1 M NaOH + 1 M methanol	NA	Catal. Commun. 2010 , <i>12</i> , 67-70
AuPt/MWCNT	1.60	1.6	0.5 M KOH + 1 M methanol	NA	Electrochem. Commun. 2008 , <i>10</i> , 1748-1751
PtAu/RGO/GC	1.60		1 M KOH + 1 M methanol	69.8 % activity after 500 cycles	J. Mater. Chem. A 2013, <i>1</i> , 7255- 7261
PtPb _{0.27} NWs/C	1.21	2.41	$\begin{array}{c} 0.1 \text{ M HClO}_4 \\ + 0.15 \text{ M} \\ \text{methanol} \end{array}$	58.4 % activity after 1000 cycles	Chem. Mater. 2016 , <i>28</i> , 4447- 4452
PtPb Nanorods/C	0.70		$\begin{array}{c} 0.1 \text{ M H}_2\text{SO}_4 \\ + 0.5 \text{ M} \\ \text{methanol} \end{array}$	NA	J. Am. Chem. Soc. 2007, 129, 8684- 8685
PtCu Nanotubes/C		4.7	0.1 M HClO ₄ + 1 M methanol	NA	Angew. Chem. Int. Ed. 2009 , <i>48</i> , 4217-4221
PtCu _{2.1} NWs	1.56	3.31	0.1 M HClO ₄ +	70.1 % activity	Nano Lett. 2016,

Table S1 A literature survey of the activity and stability of electrocatalysts toward MOR.

			0.2 M	after 1000 cycles	16, 50375043
			methanol		
Highly	NA	0.93	0.1 M HClO ₄ +	67.3 % activity	Chem. Sci. 2012,
branched Pt-Ni			0.1 M	after 4000 cycles	3, 1925-1929
			methanol		
PtZn		~ 0.92	0.1 M H ₂ SO ₄	NA	ACS Nano 2012,
Nanoparticles/C			+ 0.5 M		6, 5642-5647
			methanol		
THH PtNi NFs	0.84	2.19	0.1 M HClO ₄ +	20.0 % activity	Nano Lett. 2016,
			0.2 M	after 600 cycles	16, 2762-2767
			methanol		
Pt ₃ Cu/C	~ 0.70	~ 0.50	0.5 M HClO ₄ +	NA	ACS Appl. Mater.
			1 M methanol		Interface 2014 , <i>6</i> ,
					17748-17752

Catalysts	Peaks cu	irrents from	Electrolyte	Cycling stability	References
	CV curves				
	J _m	J _s			
	(A/mg)	(mA/cm ²)			
3D-2D hybrids	4.7	12.3	1.0 M KOH	70.2 % activity	This work
			+ 1.0 M	after 1000 cycles	
			ethanol		
Pt-Cu Nanocone	~ 0.4	2.97	0.5 M H ₂ SO ₄	NA	J. Am. Chem.
			+ 1.0 M		Soc. 2013, 135,
			ethanol		18304-18307
Pd/C promoted	1.5	NA	1.0 M KOH	60 % activity after	Electrochim. Acta
with CaSiO ₃			+ 1.0 M	1000 cycles	2015 , <i>158</i> , 18-23
			ethanol	5	
Pd ₇ Ru ₁	1.15		1.0 M KOH	67.7 % activity	Nanoscale 2015,
nanodendrites			+ 1.0 M	after 500 cycles	7, 12445-12451
			ethanol		· ,
Tetrahexahedral	0.77	1.99	0.1M	NA	Nano Lett. 2016 .
PtNi			$HClO_4 + 0.2$		16 2762-2767
Nanoframes/C			M ethanol		
PdPt@Pt/rGO	0.074		$0.5 \text{ MH}_2\text{SO}_4$	NA	ACS Appl Mater
	0.07.		+ 0.5 M	1.1.1	Inter 2014 6
			Ethanol		10549-10555
PdCua	16		1.0 M KOH	70 % activity after	ACS Appl Mater
Tucu ₂	1.0		+ 1 M	300 cycles	Interfaces 2016 8
			ethanol	500 cycles	34497
Pt-Pd CNCS	1.07			NA	I Mater Chem A
it i u cives	1.07		+ 1 M	1111	2014 2 13840-
			ethanol		13844
PdNi	1.5			60 % activity after	L Colloid
	1.5		+1 M	500 cycles	J. Conord Interface Sci
			ethanol	500 cycles	2017 403 190-
			ethanor		197
ΡτΑμ ΑΝΕς	1 21	0.95		NA	Int I Hydrogen
I tru rivi s	1.21	0.75	+ 0.5 M	1174	Energy 2016 <i>A1</i>
			ethanol		1645_1653
DtSn		0.741		NI A	Angew Chem
Tion Nancorvetale/CNT		~ 0.741	$1.5 \text{ M} \Pi_2 SO_4$	INA	Angew. Chem.
manoerystais/CiNT			⊤ 1 IVI ethanol		ин. Eu. 2010, JJ, 1052 1056
	0.190			52.0/ activity - 6	4752-4750
PtKu	0.189		$0.5 \text{ M} \text{H}_2\text{SO}_4$	52% activity after	Electrochim. Acta
ivanoparticles/XC	1	1	+ 0.3 M	500 cycles	2014, 142, 223-

Table S2 A literature survey of the activity and stability of electrocatalysts toward EOR.

			ethanol		227
PtPb _{0.27} NPs/C	0.25	1.19	0.1 M	31.6 % activity	Chem. Mater.
			HClO ₄ + 0.2	after 1000 cycles	2016 , <i>28</i> , 4447-
			M ethanol		4452.
Pt-CoSn/C	0.55		0.5 M H ₂ SO ₄	NA	J. Power Sources.
			+ 1 M		2011 , <i>196</i> , 8000-
			ethanol		8003
PtAu NWs		~ 0.741	1 M KOH +	NA	Energy Environ.
			0.1 M		Sci., 2012 , <i>5</i> ,
			ethanol		8328-8334
THH PtNi NFs	0.77	1.99	0.5 M	30 % activity after	Nano Lett. 2016,
			HClO ₄ + 0.2	300 cycles	16, 2762-2767
			M ethanol		