Electronic Supporting Information

Direct Growth of Doping Controlled Monolayer WSe_{2} by

Selenium-Phosphorus Substitution

Won Tae Kang ${ }^{\text {a }}$, Il Min Lee ${ }^{\text {a }}$, Seok Joon Yun ${ }^{\text {b,c }, ~ Y o u n g ~ I l ~ S o n g ~}{ }^{\text {d }}$, Kunnyun Kime ${ }^{\text {e }}$ Do-Hwan Kim ${ }^{\text {b }}$, Yong Seon Shina ${ }^{\text {a }}$, Kiyoung Lee ${ }^{f}$, Jinseong Heo ${ }^{\mathrm{f}}$, Young-Min Kim ${ }^{\text {b,c }}$, Young Hee Lee ${ }^{\text {b,c }}$ and Woo Jong Yu* ${ }^{\text {a }}$
${ }^{\text {a.Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 16419, Republic }}$ of Korea.
${ }^{\text {b }}$ Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
c.IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
${ }^{\text {d. Department of Advanced Materials Science \& Engineering, Sungkyunkwan University, Suwon, 16419, }}$ Republic of Korea.
e.Korea Electronics Technology Institute, Seongnam, 13509, Republic of Korea.
f.Samsung Advanced Institute of Technology, Suwon, 16678, Korea.
*Corresponding author E-mail: micco21@skku.edu

Figure S1. Schematic illustration of the domain shape changes and their comparison between intrinsic and Pdoped WSe_{2}. Schematic ball-and-stick models for the different shapes of the monolayer WSe_{2} structure. The initial crystal structure on the left shows two types (W or Se) of WSe_{2} terminations. The schematic diagram on the right illustrates the domain shape changing procedure depending on the $\mathrm{W}: \operatorname{Se} \& \mathrm{P}$ rates of the two different terminations.

Figure S2. AFM images of P-doped WSe_{2} layers. (a) Optical image of CVD grown P-doped $\mathrm{WSe} \mathrm{e}_{2}$ layers. (b) AFM image of the dotted area in (a). Height profile of a WSe_{2} layer taken across the dotted line in (b), which indicates the monolayer thickness.

Figure S3. Raman and photoluminescence spectra of other intrinsic and p-doped WSe_{2} flakes. (a) Scanning Raman intensity at the $\mathrm{E}^{1}{ }_{2 \mathrm{~g}}$ peak of intrinsic WSe_{2}. (b) Raman spectrum of intrinsic WSe_{2}. (c) Scanning photoluminescence of intrinsic WSe_{2}. (d) Photoluminescence spectrum of intrinsic WSe_{2}. (e) Scanning Raman intensity at the $\mathrm{E}^{1}{ }_{2 \mathrm{~g}}$ peak of P-doped WSe_{2}. (f) Raman spectrum of P-doped WSe_{2}. (g) Scanning photoluminescence of P -doped WSe_{2}. (h) Photoluminescence spectrum of P-doped WSe_{2}. Scale bars are $5 \mu \mathrm{~m}$.

Supporting information 1: 2D carrier concentration calculation

The 2D carrier concentration in an p-type semiconductor is derived from the drift current density (J$)^{1,2}$ equation:

$$
\begin{equation*}
J=q n \mu_{n} E+q p \mu_{p} E=\sigma E \tag{Equation1}
\end{equation*}
$$

Where, q is the electron charge, E is the electron field, n is electron concentration, p is hole concentration, μ_{n} is electron mobility, μ_{p} is hole mobility, and σ is conductivity respectively.

P-doped WSe_{2} is p-type semiconductor materials with hole majority carrier (equal to 2 D carrier concentration, $n_{2 d}$, electron minority carrier can be neglected and the supplementary equation 1 becomes:

$$
J=q n_{2 d} \mu_{p} E \quad \text { (Equation 2) }
$$

Carrier concentration can be calculated by:

$$
\begin{equation*}
n_{2 d}=\frac{J}{q \mu_{p} E}=\frac{\sigma}{q \mu_{p}} \tag{Equation3}
\end{equation*}
$$

To calculate the conductivity, we use the following equation:

$$
\begin{equation*}
\sigma=\frac{I_{d s} L}{V_{d s} W} \tag{Equation4}
\end{equation*}
$$

Where, $I_{d s}$ is the drain current, $V_{d s}$ is the drain voltage, L, and W are the channel length and channel width, respectively.

To calculate the hole mobility, we use the following equation:

$$
\begin{equation*}
\mu_{p}=\frac{G_{m} L}{C_{i} V_{d s} W} \tag{Equation5}
\end{equation*}
$$

Where, G_{m} and C_{i} are transconductance and capacitance per unit area, respectively.
Using above conductivity and hole mobility equation, the equation 3 becomes:

$$
\begin{equation*}
n_{2 d}=\frac{I_{d s} \quad L}{q \mu_{p} V_{d s} W}=\frac{I_{d s} C_{i}}{q G_{m}} \tag{Equation6}
\end{equation*}
$$

Based on the conductivity-voltage characteristic in Figure 7b, we extract the doping concentrations.

References

Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, D. H. Luong, I. M. Lee, K. Lee, D. Ko, J. Heo, S. Park, Y. H. Lee, W. J. Yu, Nat. Commun., 2016, 7, 1-8.
H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, Y. H. Lee, Adv. mater., 2017, 29, 1-6.

