Electronic Supporting Information

Direct Growth of Doping Controlled Monolayer WSe₂ by

Selenium-Phosphorus Substitution

Won Tae Kang^a, Il Min Lee^a, Seok Joon Yun^{b,c}, Young Il Song^d, Kunnyun Kim^e, Do-Hwan Kim^b, Yong Seon Shin^a, Kiyoung Lee^f, Jinseong Heo^f, Young-Min Kim^{b,c}, Young Hee Lee^{b,c} and Woo Jong Yu^{*a}

^a Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

^{b.}Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

^c·IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.

^dDepartment of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

^eKorea Electronics Technology Institute, Seongnam, 13509, Republic of Korea.

f. Samsung Advanced Institute of Technology, Suwon, 16678, Korea.

^{*}Corresponding author E-mail: micco21@skku.edu

Figure S1. Schematic illustration of the domain shape changes and their comparison between intrinsic and P-doped WSe₂. Schematic ball-and-stick models for the different shapes of the monolayer WSe₂ structure. The initial crystal structure on the left shows two types (W or Se) of WSe₂ terminations. The schematic diagram on the right illustrates the domain shape changing procedure depending on the W:Se&P rates of the two different terminations.

Figure S2. AFM images of P-doped WSe₂ layers. (a) Optical image of CVD grown P-doped WSe₂ layers. (b) AFM image of the dotted area in (a). Height profile of a WSe₂ layer taken across the dotted line in (b), which indicates the monolayer thickness.

Figure S3. Raman and photoluminescence spectra of other intrinsic and p-doped WSe₂ flakes. (a) Scanning Raman intensity at the E¹_{2g} peak of intrinsic WSe₂. (b) Raman spectrum of intrinsic WSe₂. (c) Scanning photoluminescence of intrinsic WSe₂. (d) Photoluminescence spectrum of intrinsic WSe₂. (e) Scanning Raman intensity at the E¹_{2g} peak of P-doped WSe₂. (f) Raman spectrum of P-doped WSe₂. (g) Scanning photoluminescence of P-doped WSe₂. (h) Photoluminescence spectrum of P-doped WSe₂. Scale bars are 5μm.

Supporting information 1: 2D carrier concentration calculation

The 2D carrier concentration in an p-type semiconductor is derived from the drift current density (J)^{1,2} equation:

$$J = qn\mu_n E + qp\mu_p E = \sigma E$$
 (Equation 1)

Where, q is the electron charge, E is the electron field, n is electron concentration, p is hole concentration, μ_n is electron mobility, μ_p is hole mobility, and σ is conductivity respectively.

P-doped WSe₂ is p-type semiconductor materials with hole majority carrier (equal to 2D carrier concentration, n_{2d}), electron minority carrier can be neglected and the supplementary equation 1 becomes:

$$J = q n_{2d} \mu_p E \qquad \text{(Equation 2)}$$

Carrier concentration can be calculated by:

$$n_{2d} = \frac{J}{q\mu_p E} = \frac{\sigma}{q\mu_p}$$
 (Equation 3)

To calculate the conductivity, we use the following equation:

$$\sigma = \frac{I_{ds} L}{V_{ds}W}$$
 (Equation 4)

Where, I_{ds} is the drain current, V_{ds} is the drain voltage, L, and W are the channel length and channel width, respectively.

To calculate the hole mobility, we use the following equation:

$$\mu_p = \frac{G_m L}{C_i V_{ds} W}$$
 (Equation 5)

Where, G_m and C_i are transconductance and capacitance per unit area, respectively.

Using above conductivity and hole mobility equation, the equation 3 becomes:

$$n_{2d} = \frac{I_{ds} \quad L}{q\mu_p V_{ds} W} = \frac{I_{ds} C_i}{qG_m}$$
 (Equation 6)

Based on the conductivity-voltage characteristic in Figure 7b, we extract the doping concentrations.

References

- Q. A. Vu, Y. S. Shin, Y. R. Kim, V. L. Nguyen, W. T. Kang, H. Kim, D. H. Luong, I. M. Lee, K. Lee,
 D. Ko, J. Heo, S. Park, Y. H. Lee, W. J. Yu, *Nat. Commun.*, 2016, 7, 1–8.
- 2 H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, Y. H. Lee, *Adv. mater.*, 2017, **29**, 1–6.