Supporting Information

Assembly of Thiacalix[4]arene-Supported High-Nuclearity Cd₂₄ Cluster with Enhanced Photocatalytic Activity

Cheng Shi,^{a†} Min Zhang,^{a†} Xinxin Hang,^a Yanfeng Bi,^{*a} Liangliang Huang, ^a Kun Zhou,^a Zhenhe Xu,^{*b} and Zhiping Zheng^{*ac}

^aCollege of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China

^bThe Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang,110142, China ^cUniversity of Arizona, Department of Chemistry, Tucson AZ 85721, USA *E-Mail: biyanfeng@lnpu.edu.cn; xuzh@syuct.edu.cn; zhiping@u.arizona.edu

Table of Contents

Characterizations and additional Figures	2
PXRD measurements	2
Plot of Cd ₄ unit	2
TGA analysis of Cd ₂₄ and Cd ₄	3
Calculating hydrogen evolution rates	4
Diffuse reflectance spectra	5
FT-IR spectra	6
MALDI-TOF mass spectra	6
Raman spectra	7
Tables	8

Characterizations and additional Figures

PXRD measurements

Plot of Cd₄ unit

Fig. S3 Molecular structure of [Cd₄(TC4A)₂] (Cd₄)

TGA analysis of Cd_{24} and Cd_4

Fig. S4 The TGA curves of Cd₂₄

Fig. S5 The TGA curves of compound Cd_4 . 3 / 15

Calculating hydrogen evolution rates

Fig. S6 Calculating hydrogen evolution rates of Cd_{24} considering the molecule CdS proportions (37.24%, 1.36 mmol g_{CdS}^{-1} h⁻¹).

Fig. S7 Calculating hydrogen evolution rates of Cd_4 considering the molecule CdS proportion (27.82%, 0.35 mmol g_{CdS}^{-1} h⁻¹).

Diffuse reflectance spectra

Fig. S8 The diffuse reflectance UV-vis-NIR spectra of K-M function vs. energy (eV) for Cd_{24} -F (calculated band gap: 3.26 eV, defined as semiconductor with a direct band gap)

Fig. S9 The diffuse reflectance UV-vis-NIR spectra of K-M function vs. energy (eV) for Cd₄-F (calculated band gap: 3.26 eV, defined as semiconductor with a direct band gap).

FT-IR spectra

Fig. S10 FT-IR spectra of Cd_{24} and Cd_4 -F, which indicated the release of DMF both coordinated and in the crystal lattice after photocatalytic water splitting experiments.

MALDI-TOF mass spectra

Fig. S11 MALDI-TOF mass spectra of Cd_{24} and Cd_4 -F showing the partially release of coordinated DMF after photocatalytic water splitting experiments.

Raman spectra

Fig. S12 The Raman spectra of Cd_{24} and Cd_{24} -F, showing the satiability of photocatalyst of Cd_{24} .

Tables

Complex	Cd ₂₄	Cd ₄
CCDC number	1582708	1582709
Formula	C288H378Cd24Cl8 N16O82P6S	$C_{88}H_{108}Cd_4N_2$
		$O_{11}S_8$
Mr	9312.50	2075.84
Crystal system	Trigonal	Monoclinic
space group	R-3 (No.148)	C_2/c (No. 15)
Temperature (K)	120(2) K	298(2) K
$a(\text{\AA})$	22.4712(7)	32.7990(15)
$b(\text{\AA})$	22.4712(7)	19.0653(8)
<i>c</i> (Å)	62.0494(18)	31.1251(13)
$\alpha(^{o})$	90	90
$\beta(^{\circ})$	90	114.228(2)
γ(°)	120	90
Volume (Å ³)	27134.4(19)	17748.9(14)
Ζ	3	8
$D_{\rm c}({\rm g/cm^3})$	1.710	1.554
$\mu(\text{mm}^{-1})$	1.675	1.192
Reflections collected	45339	113983
Unique data	10623	15696
$R_{\rm int}$	0.022	0.040
GOF on F^2	1.047	1.024
R_1 [I>2sigma(I)]	0.0491	0.0478
wR_2	0.1435	0.1423

Table S1 Crystallographic data and structure refinement for complexes \mathbf{Cd}_{24} and \mathbf{Cd}_4

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}wR_{2} = \{\Sigma [w(F_{0}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{0}{}^{2})^{2}] \}^{1/2}$

Cd ₂₄			Cd ₄
Cd1–O9	1.974 (6)	Cd1–O4 ⁱ	2.268 (3)
Cd1–O1	2.193 (4)	Cd1–O4	2.268 (3)
Cd1-O10	2.217 (6)	Cd1–O1 ⁱ	2.283 (3)
Cd1–O4	2.239 (4)	Cd1–O1	2.283 (3)
Cd1–O6	2.278 (4)	Cd1–S1	2.6779 (11)
Cd1–O8 ⁱ	2.286 (4)	Cd1–S1 ⁱ	2.6779 (11)
Cd1–O5	2.436 (5)	Cd2–O4 ⁱ	2.231 (3)
Cd1–S1	2.7604 (17)	Cd2–O2	2.243 (3)
Cd2–O11	1.948 (5)	Cd2-O1	2.301 (3)
Cd2–O5 ⁱⁱ	2.169 (4)	Cd2–O3 ⁱ	2.303 (3)
Cd2-O1	2.237 (4)	Cd2–S2	2.6849 (12)
Cd2–O8 ⁱ	2.281 (4)	Cd2–S4 ⁱ	2.7188 (12)
Cd2–O2	2.309 (4)	Cd3–O2i	2.218 (3)
Cd2–O9 ⁱⁱ	2.516 (6)	Cd3–O2	2.218 (3)
Cd2-O9	2.581 (5)	Cd3–O3	2.312 (3)
Cd2Cl2	2.6087 (8)	Cd3–O3i	2.313 (3)
Cd2–S2	2.6980 (17)	Cd3–S3i	2.6690 (11)
Cd3–O6 ⁱ	2.206 (4)	Cd3–S3	2.6690 (11)
Cd3011	2.229 (6)	Cd4–O8	2.232 (3)
Cd3–O2	2.290 (4)	Cd4–O6 ⁱ	2.247 (3)
Cd3-O3	2.309 (4)	Cd4–O5	2.259 (4)
Cd3–O7 ⁱⁱ	2.346 (5)	Cd4–O5	2.290 (4)
Cd3–O10 ⁱ	2.553 (6)	Cd4–S5	2.6932 (12)
Cd3Cl1	2.6248 (18)	Cd4–S6 ⁱ	2.7216 (12)
Cd3-S3	2.6233 (17)	Cd5-O6	2.238 (3)
Cd4-07	2.202 (4)	Cd5–O8 ⁱ	2.248 (3)

Table 2 Selected bonds lengths (Å) and angles (°) for compound Cd_{24} and Cd_{4} .

Cd4–O12	2.260 (5)	Cd507	2.253 (4)
Cd4–O4 ⁱⁱⁱ	2.294 (4)	Cd5–O7 ⁱ	2.302 (4)
Cd4–O3 ⁱⁱⁱ	2.343 (5)	Cd5–S7	2.7165 (12)
Cd4–Cl1 ^{iv}	2.7202 (19)	Cd5–S8 ⁱ	2.6746 (13)
Cd4–S4 ⁱⁱⁱ	2.5976 (16)		
Cd3–Cl1–Cd4 ⁱⁱ	87.70 (5)	Cd1O1Cd2	101.58 (11)
Cd2 ^{iv} -Cl2-Cd2	116.47 (4)	Cd3O2Cd2	105.51 (12)
Cd2 ^{iv} -Cl2-Cd2 ⁱⁱ	116.47 (4)	Cd2 ⁱ -O3-Cd3	100.61 (11)
Cd2–Cl2–Cd2 ⁱⁱ	116.47 (4)	Cd2 ⁱ -O4-Cd1	104.31 (12)
Cd1O1Cd2	104.19 (17)	Cd4 ⁱ -O5-Cd4	106.87 (15)
Cd3O2Cd2	110.87 (17)	Cd5–O6–Cd4 ⁱ	106.44 (14)
Cd3–O3–Cd4 ⁱ	119.12 (19)	Cd5–O7–Cd5 ⁱ	107.05 (16)
Cd1–O4–Cd4 ⁱ	107.91 (18)	Cd4–O8–Cd5 ⁱ	106.62 (14)
Cd2 ^{iv} -O5-Cd1	131.6 (2)		
Cd3 ⁱⁱⁱ –O6–Cd1	116.11 (19)		
Cd4–O7–Cd3 ^{iv}	108.99 (18)		
Cd2 ⁱⁱ –O8–Cd1 ⁱⁱⁱ	99.87 (16)		
Cd1–O9–Cd2 ^{iv}	138.5 (3)		
Cd109Cd2	99.4 (2)		
Cd2 ^{iv} -O9-Cd2	121.0 (2)		
Cd1-O10-Cd3 ⁱⁱⁱ	105.6 (2)		
Cd2011Cd3	130.1 (3)		

Symmetry codes: (i) x-y+1/3, x-1/3, -z+2/3; (ii) -y+1, x-y, z; (iii) y+1/3, -x+y+2/3, -z+2/3; (iv) -x+y+1, -x+1, z for Cd₂₄; Symmetry code: (i) -x+1, y, -z+1/2 for Cd₄.

Photocatalysts	Sacrificial	Co-catalyst	H ₂ evolution	Catalyst weight	H ₂ evolution	Stability evidence	Ref.
	agent		(reference)	(mg)	(µmol/g _{cat} /h)		
Cd ₄	TEOA	-	-	50	95.7	Reuse, UV-vis, IR, Multi-	This work
Cd ₂₄	TEOA	-	-	50	477.5	TOF, Raman	
Uio-66(Zr)	CH ₃ OH	-	~1.0 mL(3h)	45	~281	Laser flash photolysis	S1
Uio-66-(NH ₂) (Zr)	CH ₃ OH	-	~0.85 mL(3h)	45	~331		
Uio-66(Zr)	TEOA	-	none	50	none	Reuse, PXRD	S2
	TEOA	1%Pt	3.9 µmmol/g/h	50	3.9		
	TEOA	RhB:1.63 mg/g	2.7 μmmol/g/h	50	2.7		
	TEOA	RhB:7.43 mg/g	33.9 µmmol/g/h	50	33.9		
	TEOA	RhB:2.54 mg/g+1%Pt	5.6µmmol/g/h	50	5.6		
	TEOA	RhB:7.43 mg/g+ 1%Pt	116.0µmmol/g/h	50	116.1		
MIL-125(Ti)	TEOA	Pt	none	10	none	Reuse	S3
MIL-125(Ti)-NH ₂	TEOA	-	5 µmol (3h)	10	166.7		
	TEOA	Pt	33µmmol (9h)	10	367		
MIL-125(Ti)-NH ₂	TEOA	-	2.3 μmol/h	10	230	Reuse, PXRD, FT-IR	S4
	TEOA	0.5%Pt	3.3 µmol/h	10	333		l.
	TEOA	1%Pt	14µmmol (3h)	10	467		
	TEOA	1.5%Pt	15.5µmmol (3h)	10	517	_	
	TEOA	2%Pt	13µmmol(3h)	10	433		
MIL-125(Ti)-NH ₂	TEOA	-	7µmmol/g/h	30	7	Reuse, FT-IR	S5
	TEOA	2 % rGO	35µmmol//h/g _{cat}	30	35		
	TEOA	4 % rGO	50µmmol//h/g _{cat}	30	50		
	TEOA	6 % rGO	91µmmol//h/g _{cat}	30	91		
	TEOA	8 % rGO	67µmmol//h/g _{cat}	30	67		
	TEOA	10 % rGO	66µmmol//h/g _{cat}	30	66		
MIL-101(Cr)	TEOA	Ni	0.22µmmol(2h)	50	2.2	-	S6

Table S3. Comparison on the photocatalytic performance of some coordination compound based catalysts for photocatalytic H_2 production.*

	TEOA	Мо	0.15µmmol(2h)	50	1.5		
	TEOA	Ni,Mo	0.84µmmol(2h)	50	8.4		
NH ₂ -Uio-66(Zr/Ti)-	TEOA	Pt	2.4µmmol/mol	50	0.094	-	S7
NH ₂ -Uio-66(Zr/Ti)-120-16	TEOA	Pt	3.5µmmol/mol	50	0.14		
NH ₂ -MIL-101(Cr)	TEOA	-	~3 µmmol(6h)	10	~50	Reuse	S8
	TEOA	RhB +0.5%Pt	28µmmol(6h)	10	467		
	TEOA	RhB +1%Pt	31.5µmmol(6h)	10	525		
	TEOA	RhB +1.5%Pt	35µmmol(6h)	10	583		
	TEOA	RhB +2%Pt	30.5µmmol(6h)	10	508		
	TEOA	RhB +3%Pt	25µmmol(6h)	10	417		
Ti-MOF-Ru(tpy) ₂	TEOA	-	2.1 µmmol (6h)	10	35	Reuse, PXRD	S9
	TEOA	Pt	10.9µmmol (6h)	10	181.7		
Al-PMOF	EDTA	Pt	200µmmol/g/h	3.5	200	PXRD, SEM	S10
Zn _{0.986(12)} TCPP[Al(OH) ₂]	EDTA	Pt	100µmmol/g/h	3.5	100		
MIL-125-NH ₂	TEOA	-	17µmmol/g/h	6	17	PXRD, SEM	S11
	TEOA	0.97%Co1	267µmmol/g/h	6	267		
	TEOA	1.7% Co2	381µmmol/g/h	6	381		
	TEOA	1.93% Co3	553µmmol/g/h	6	553		
Gd-MOF	TEOA	-	7.71µmmol/h	50	154.2	PXRD	S12
	TEOA	1.5 wt% A	10.6µmmol/h	50	212		
Uio-66-[FeFe]	Ascorbic acid	$[Ru(bpy)_3]^{2+}$	3.5 µmmol	5	280	-	S13
(FeFe)@ZrPF	Ascorbic acid	-	3.5 µmmol (2 h)	~5	350	-	S14
NH ₂ -MIL-125(Ti)	TEA	-	2.5 µmmol (25 h)	5	20	Reuse	S15
Co-NH ₂ -MIL-125(Ti)	TEA	-	37.5 µmmol (20 h)	5	375		
Uio-66(Zr)	L-ascorbic	0.16 %Pt	none	10	none	Reuse	S16
	acid						
	L-ascorbic	0.16 %Pt +ErB(30mg)	4.6µmmol/h	10	460		
	acid						
Uio-67(Zr)	EDTA-2Na	Pt	0.35µmmol (4h)	5	17.5	-	S17
	EDTA-2Na	Pt-Ru	0.5µmmol (4h)	5	25		

Al-TCPP	TEOA	-	1.5µmmol/g/h	5	1.5	Reuse, PXRD, TEM,	S18
	TEOA	Pt coordination	129µmmol/g/h	5	129	HAADF-STEM	
MIL-100(Fe)	CH ₃ OH	-	5.9µmmol/g/h	45	5.9	Reuse	S19
	CH ₃ OH	0.5% Pt	53µmmol/g/h	45	53		
	CH ₃ OH	0.8% Pt	109µmmol/g/h	45	109		
	CH ₃ OH	1% Pt	98µmmol/g/h	45	98		
	CH ₃ OH	4% Pt	74µmmol/g/h	45	74		
Cd-MOF	TEOA	-	3.13µmmol/h	10	313	Reuse, PXRD	S20
CdS@Cd-MOF	Na ₂ SO ₃ -Na ₂ S	gel-to-crystal	729µmmol/g/h	20	729	-	S21
Cd-MOF@TiO ₂	Na ₂ SO ₃ -Na ₂ S	gel-to-crystal	217µmmol/g/h	20	217		
ZAVCI MOF	ethanol	-	20 µmmol/g/h	30	20	Reuse	S22
CdS@ ZAVC1 MOF	ethanol	-	16 μmmol/g/h	30	16		
CdS@ ZAVC1 MOF	ethanol	Pt	398-418µmmol/g/h	30	398-418		
MIL-101(Cr)	Lactic acid	0.5%Pt	none	20	none	Reuse, PXRD	S23
CdS@MIL-101(Cr) (5)	Lactic acid	0.5%Pt	22 µmmol/g	20	1100		
CdS@MIL-101(Cr) (10)	Lactic acid	0.5%Pt	75.5 mol/g _{CdS} /h	20	7550		
Ui66(Zr)	Na ₂ SO ₃ -Na ₂ S	Pt	none	50	none	Reuse, PXRD, BET	S24
CdS@ Ui66(Zr)	Na ₂ SO ₃ -Na ₂ S	Pt	11.2mol/g _{CdS} /h	50	1702		
CdS@Ti-MCM-41	Na ₂ SO ₃	-	250 umol/g _{CdS} /h	200	21.8	Reuse, UV-vis	S25
	Na ₂ SO ₃	2%Pt	875 umol/g _{CdS} /h	200	76.1		
CdS@MCM-48	ethanol	-	0.22mmol/g/h	40	220	-	S26
CdS/Ti(0.02)-MCM-41	TEA	-	47.11µmmol (5h)	200	47.1	-	S27
$Cu-en-[PNb_{12}O_{40}(VO)_6]$	CH ₃ OH	0.75% Pt	44.35µmmol/g/h	100	44.35	Reuse, PXRD	S28
Cu-enMe-[PNb ₁₂ O ₄₀ (VO) ₆]	CH ₃ OH	0.75% Pt	43.86µmmol/g/h	100	43.86		
Cu^{I}_{12} - $[\alpha$ - $PW_{12}O_{40}]$ MOF	ethanol	1% Pt	192µmmol/g/h	100	192	Reuse, PXRD	S29
$Co-pn-[PNb_{12}V_2O_{40}(VO)_4]$	CH ₃ OH	1% H ₄ PtCl ₆	19.25 µmmol/g/h	50	19.25	Reuse, PXRD, IR	S30
Co-pn-[PNb ₁₂ O ₄₀ (VO) ₆]	CH ₃ OH	1% H ₄ PtCl ₆	29.25 µmmol/g/h	50	29.25		
$Cr_{3}[Ta_{3}P_{2}W_{15}O_{62}]$	CH ₃ OH	-/ 1.2 mg H ₄ PtCl ₆	30.9/198.3µmmol/g/h	27	198.3	UV-vis, IR	S31
$Cr_4[Ta_3P_2W_{15}O_{62}]$	CH ₃ OH	-/ 1.2 mg H ₄ PtCl ₆	17.8/89.2µmmol/g/h	27	89.2		

*Note: The photocatalytic water splitting performance of the coordination compounds without co-catalyst are highlighted in red. 13 / 15

Reference

- S1 C. G. Silva, I. Luz, F. X. LlabrésiXamena, A. Corma and H. García, Chem. Eur. J., 2010, 16, 11133.
- S2 J. He, J. Q. Wang, Y. J. Chen, J. P. Zhang, D. L. Duan, Y. Wang and Z. Y. Yan, Chem. Commun., 2014, 50, 7063.
- S3 Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo and M. Matsuoka, J. Phys. Chem. C., 2012, 116, 20848.
- S4 T.Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura and M. Matsuoka, Catal.Sci. Technol., 2013, 3, 2092.
- S5 P. Karthik, R. Vinoth, P. Zhang, W. Chio, E. Balaraman and B. Neppolian, ACS Appl. Energy Mater., 2018, 1, 1913.
- S6 W. L. Zhen, H. B. Gao, B. Tian, J. T. Ma and G. X. Lu, ACS Appl. Mater. Interfaces., 2016, 8, 10808.
- S7 D. R. Sun, W. J. Liu, M. Qiu, Y. F. Zhang and Z. H. Li, Chem. Commun., 2015, 51, 2056.
- S8 M. C. Wen, K. Mori, T. Kamegawa and H. Yamashita, Chem. Commun., 2014, 50, 11645.
- S9 T.Toyao, M. Saito, S. Dohshi, K. Mochizuki, M. Iwata, H. Higashimura, Y. Horiuchiand M. Matsuoka, Chem. Commun., 2014, 50, 6779.
- S10 A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent and M. J. Rosseinsky, *Angew. Chem. Int. Ed.*, 2012, **51**, 7440.
- S11 Z. Li, J. D. Xiao and H. L. Jiang, ACS Catal., 2016, 6, 5359.
- S12 X. J. Sun, Q. Yu, F. M. Zhang, J. Z. Wei and P. Yang, Catal. Sci. Technol., 2016, 6, 3840.
- S13 S. Pullen, H. H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2013, 135, 16997.
- S14 K.Sasan, Q. P. Lin, C. Y. Mao and P. Y. Feng, Chem. Commun., 2014, 50, 10390.
- S15 M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt and J. Gascon, *Energy Environ. Sci.*, 2015, **8**, 364.
- S16 Y. P. Yuan, L. S. Yin, S. W. Cao, G. S. Xu, C. H. Li and C. Xue, Appl. Catal. B-Environ., 2015, 168-169, 572.
- S17 C. C. Hou, T. T. Li, S. Cao, Y. Chen and Y. F. Fu, J. Mater. Chem. A., 2015, 3, 10386.
- S18 X. Z. Fang, Q. C. Shang, Y. Wang, L. Jiao, T. Yao, Y. F. Li, Q. Zhang, Y. Luo and H. L. Jiang, Adv. Mater., 2018, 30, 1705112.

- S19 D. K. Wang, Y. J. Song, J. Y. Cai, L. Wu and Z. H. Li, NewJ. Chem., 2016, 40, 9170.
- S20 T. Song, P. Y. Zhang, J. Zeng, T. T. Wang, A. Ali and H. P. Zeng, Int. J. Hydrogen Energy., 2017, 42, 26605.
- S21 C. W. Zhao, Y. A. Li, X. R. Wang, G. J. Chen, Q. K. Liu, J. P. Ma and Y. B. Dong, Chem. Commun., 2015, 51, 15906.
- S22 S. Saha, G. Das, J. Thote and R. Banerjee, J. Am. Chem. Soc., 2014, 136, 14845.
- S23 J. He, Z. Y. Yan, J. Q. Wang, J. Xie, L. Jiang, Y. M. Shi, F. G. Yuan, F. Yu and Y. J. Sun, Chem. Commun., 2013, 49, 6761.
- S24 R. Lin, L. J. Shen, Z. Y. Ren, W. M. Wu, Y. X. Tan, H. R. Fu, J. Zhang and L. Wu, Chem. Commun., 2014, 50, 8533.
- S25 S. H. Shen and L. J. Guo, Mater. Res. Bull., 2008, 43, 437.
- S26 R. Peng, C. M. Wu, J. Baltrusaitis, N. M. Dimitrijevic, T. Rajh and R. T. Koodali, Chem. Commun., 2013, 49, 3221.
- S27 Z. Liu, S. H. Shen and L. J. Guo, Int. J. Hydrogen Energy., 2012, 37, 816.
- S28 J. Q. Shen, Y. Zhang, Z. M. Zhang, Y. G. Li, Y. Q. Gao and E. B. Wang, Chem. Commun., 2014, 50, 6017.
- S29 X. X. Zhao, S. W. Zhang, J. Q. Yan, L. D. Li, G. J. Wu, W. Shi, G. M. Yang, N. J. Guan and P. Chen, Inorg. Chem., 2018, 57, 5030.
- S30 J. F. Hu, Y. Wang, X. N. Zhang, Y. N. Chi, S. Yang, J. K. Li and C. W. Hu, Inorg. Chem., 2016, 55, 7501.
- S31 P. Huang, X. J. Wang, J. J. Qi, X. L. Wang, M. Huang, H. Y. Wu, C. Qin and Z. M. Su, J. Mater. Chem. A., 2017, 5, 22970.