Supporting information for

T-Nb₂O₅ nanoparticles enabled pseudocapacitance with fast Li-ion intercalation

Lingping Kong^a, Xiaoteng Liu^b, Jinjia Wei^a, Steven Wang^c, Ben Bin Xu^{b*},

Donghui Long^{c*}, Fei Chen^{ab*}

^a School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049,

China

^b Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

^c School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, Tyne and Wear NE1 7RU, UK

^d State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

*To whom correspondence should be addressed.

Fei Chen, Tel: +86 29 82665836, Fax: +86 29 82664375,

E-mail: feichen@xjtu.edu.cn

Donghui Long, Tel: +86 21 64252924, Fax: +86 21 64252914,

E-mail: longdh@mail.ecust.edu.cn

Ben Bin Xu, Tel: +44 0191 227 3608,

E-mail: ben.xu@northumbria.ac.uk

Sample	$S_{ m BET}$ / ${ m m}^2{ m g}^{-1}$ a	$V_{\rm T}$ / cm ³ g ^{-1 b}	$D_{\rm ave}$ / nm ^c	Size / nm ^d
Nb-0.5	12.9	0.02	7.1	41.7
Nb-1	26.3	0.11	16.6	33.7
Nb-1.5	31.1	0.15	19.7	27.1
Nb-2	33.1	0.14	16.8	24.7

Table S1. The porosity parameters and crystallite size of samples

^a BET specific surface area; ^b total pore volume ($P/P_0=0.993$); ^c BJH average pore diameter from desorption branch; ^d particle size calculated from the Scherrer formula using (001) peak.

Fig. S1 Thermal analysis results of Nb/F127 precursor films under an open air, (a) TGA, (b) DSC.

Fig. S2 High resolution XPS result of Nb-2.

Fig. S3 (a) N_2 adsorption-desorption isotherms and (b) BJH pore size distributions.

Fig. S4 SEM for pure Nb_2O_5 without any guiding agent, the scale bar is 200 nm.

Fig. S5 Nyquist plots of Nb-2 before and after CV cycling.