Supporting Information

New Solvent-Stabilized Few-Layer Black Phosphorus for

Antibacterial Applications

Zhenyu Sun,^{1,*} Yuqin Zhang,^{1†} Hao Yu,^{2†} Chao Yan,³ Yongchao Liu,³ Song Hong,²

Hengcong Tao,¹ Alex W. Robertson,⁴ Zhuo Wang,^{2,*} Agílio A. H. Pádua⁵

¹ State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

² Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, China

³ School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

⁴ Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom

⁵ Department of Chemical Engineering, Massachusetts Institutes of Technology, Cambridge, Massachusetts 02139, USA

[†] These authors contribute equally to this work.

E-mail: <u>sunzy@mail.buct.edu.cn</u> and wangzhuo77@mail.buct.edu.cn

Experimental

Materials

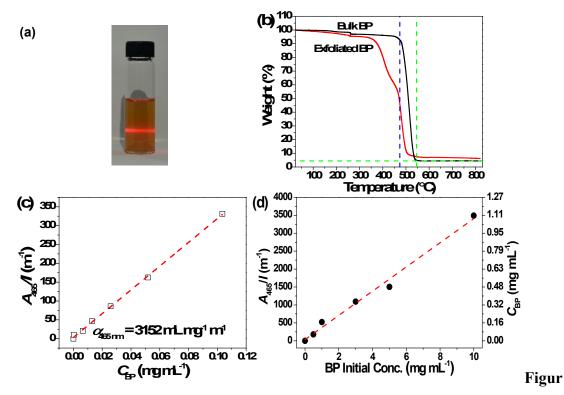
All chemicals used in this work were of analytical grade and used as supplied. All solvents were purchased from Aladdin Reagents unless otherwise specified. *N,N'*-dimethylpropyleneurea (DMPU, Energy Chemical, product number: W610006), *N*-cyclohexyl-2-pyrrolidone (CHP, Sigma Aldrich, product number: 232254), N-methyl-2-pyrrolidone (NMP, product number: M100588), isopropanol (IPA, product number: I112012), dimethylformamide (DMF, product number: D111999), 1,3-dimethyl-2-imidazolidinone (DMI, product number: D109179), levulinic acid (LA, product number: L104281), propylene carbonate (PC, product number: P105723), dimethylsulfoxide (DMSO, product number: D103273), ethanol (product number: E130059), tetrahydrofuran (THF, product number: T103260), acetone (product number: A112150), toluene (product number: T112180), hexane (product number: H109654). All solvents were degassed under high-purity nitrogen prior to use, and then

transferred to the glovebox. BP crystal (> 99.998%) was obtained from Nanjing MKNANO Tech Co., Ltd. (www.mukenanao.com), People's Republic of China.

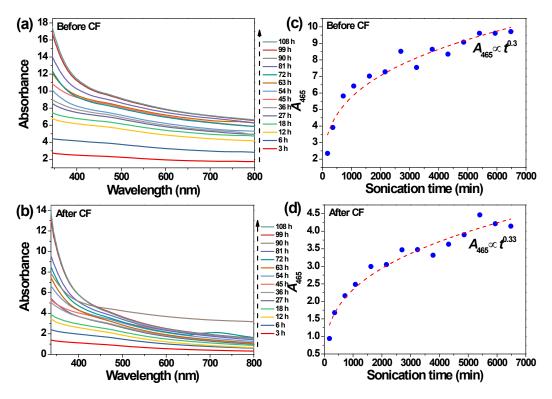
Exfoliation and dispersion of BP nanosheets in DMPU, propylene carbonate (PC), levulinic acid (LA) and other best reported solvents

Typically, phosphorene dispersions were prepared by adding bulk BP to a solvent (5 mL in a 50 mL round-bottom flask) in a glove box. The dispersions were subjected to ultrasonication using a bath sonicator (KQ-400KDE, Kunshan Ultrasonic instrument Co., Ltd., Jiangsu, China; 400 W, 40 kHz). The samples were subsequently centrifuged in a glove box to remove any poorly dispersed BP material. The top two-thirds of the dispersions were gently extracted by pipetting after centrifugation. For better reproducibility, the water level, the exact position of flasks, the bath temperature, and the volume of dispersions were ensured to be similar as possible during each preparation. UV-vis absorbance spectroscopy was employed to determine the concentration after CF, C_{BP} . For kinetic experiments, phosphorene dispersions were prepared by adding bulk BP to 60 mL of DMPU at $C_I = 1 \text{ mg mL}^{-1}$ in a 100 mL round-bottom flask in a glove box.

Antibacterial test in LB-agar coated plates


We tested the antibacterial activities of BP and other two-dimension materials by using a LB-agar coated plate counting method. One mL of *E. coli* (or *S. aureas*) with OD value of 0.8~1.0 was added into a 2 mL sterile centrifuge tube. The supernatant was separated from the tube by centrifugation at 8000 rpm for 3 min. One mL of a candidate material (160 μ g mL⁻¹) was added into the supernatant, which was then subjected to submerged cultivation at 37 °C, 200 rpm, 30 min. The resulting bacteria samples were diluted to 10⁻⁵ level, which were then used to coat LB-agar plate, and subjected to cultivation at 37 °C for 16 h. The number of colonies was determined by using a cell counter. *E. coli* (or *S. aureas*) was treated with two-dimension materials (160 μ g mL⁻¹) at 37 °C for 4 h on a shaking bed (200 rpm). These materials-treated bacterial samples were fixed with 2.5% glutaraldehyde and 30, 50, 70, 80, 90, 95, and 100% (v1/v2, in water) ethanol dehydration for SEM observation.

In vitro cytotoxicity assay


The cytotoxicity of BP nanosheets was evaluated by MTT cytotoxicity assays with HeLa cells. HeLa cells were seeded in 96-well plates at a density of 1×10^4 cells/well for 24 h (37 °C, 5% CO₂) to allow cells attachment. And the cells were incubated with different concentrations of BP in standard cell media. The cell viability of HeLa was analyzed using MTT cytotoxicity assays and read at OD 490 nm with a spectramax microwell plate reader.

Characterization

Scanning electron microscopy (SEM) was performed using a field emission microscope (FEI Quanta 600 FEG) operated at 20 kV and equipped with an energy-dispersive Xray spectrometer (EDX). Transmission electron microscopy (TEM) was conducted using an aberration corrected transmission electron microscope (JEOL 2200) with 80 kV accelerating voltage. High angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images were obtained by a JEOL JEM-ARM 200F microscope incorporated with a spherical aberration correction system for STEM. Energy-dispersive X-ray spectroscopy (EDX) mapping was performed using a 100 mm2 JEOL Centurio SDD EDX detector. (S)TEM samples were prepared by depositing a droplet of suspension onto a Cu grid coated with a lacey carbon film. Atomic force microscopy (AFM) images were obtained on a system (NT-MDT) in tapping mode at room temperature. To alleviate the problems associated with deposition of nanosheets onto substrates from high-boiling point solvents, the BP in DMPU was transferred to ethanol before drop casting the samples. Optical absorption spectra were measured using a PERSEE UV-vis spectrophotometer. X-ray photoelectron spectra (XPS) were carried out on a K-Alpha spectrometer (Thermo Fisher Scientific Inc., Switzerland) equipped with a monochromatic Al Ka source operated at 150 W. Raman spectroscopy was used to assess possible oxidation of BP nanosheets. Raman spectra of BP samples deposited on 300 nm thick SiO₂/Si substrates were collected with a Renishaw in Via Raman microscope with a He/Ne Laser excitation at 532 nm.

e S1. (a) Photograph of a phosphorene dispersion in DMPU. The Tyndall effect of the dispersion confirms its colloidal nature. (b) TGA thermograms for bulk and exfoliated BP obtained with a ramp rate of 10 °C min⁻¹ in N₂ in both cases. (c) A_{465}/l versus C_{BP} . A straight line fit through the points gave the absorption coefficient at 465 nm of α = 3152 mL mg⁻¹ m⁻¹ (31.52 cm² mg⁻¹). (d) A_{465}/l and C_{BP} versus BP initial concentration.

Figure S2. UV/visible spectra of phosphorene dispersions in DMPU as a function of sonication time: (a) before CF and (b) after CF. OD_{eff} values are apparent optical densities obtained by measuring dilutions of dispersions (so that) and then multiplying measured spectra by dilution factor. Optical densities at 465 nm measured as a function of sonication time: (c) before CF and (d) after CF. Dispersions had a total phosphorene concentration $C_{I} = 1 \text{ mg mL}^{-1}$. The dashed lines in graphs a and b are the fitting results, which show power law behaviours.

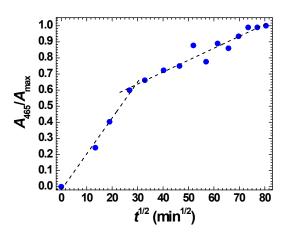
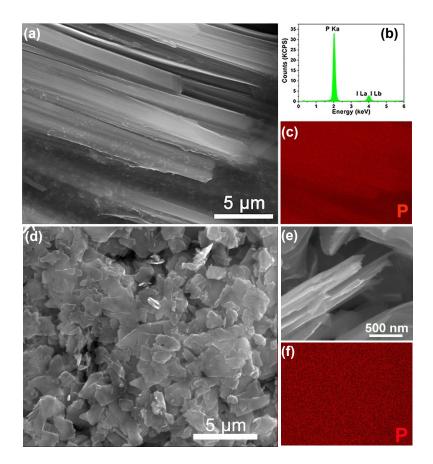



Figure S3. Diffusion scaling analysis of experimental absorbance data.

Figure S4. (a) SEM image and (b) EDX pattern of bulk BP crystals, the element I is from raw materials introduced during preparation. (c) EDX mapping image of P taken from the region shown in (a). (d) Low- and (e) high-magnification SEM images of exfoliated BP nanosheets in DMPU. (f) EDX mapping image of P taken from the area shown in (d).

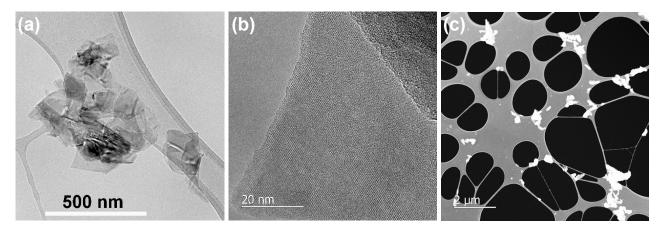



Figure S5. (a) Typical low- and (b) high-magnification TEM, and (c) HAADF-STEM

images of exfoliated BP nanosheets in DMPU.

Figure S6. (a)-(d) Tapping mode AFM images of phosphorene dispersions (initial BP concentration $C_{\rm I} = 1 \text{ mg mL}^{-1}$; $t_{\rm sonic} = 3 \text{ h}$; CF: 3000 rpm, 30 min) deposited on 300 nm thick SiO₂/Si wafers. Thickness distribution was derived from AFM counting of 122 different flakes shown in (a)-(d), using a Gwyddion software.

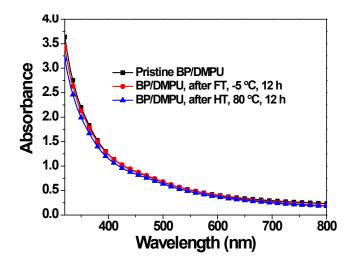
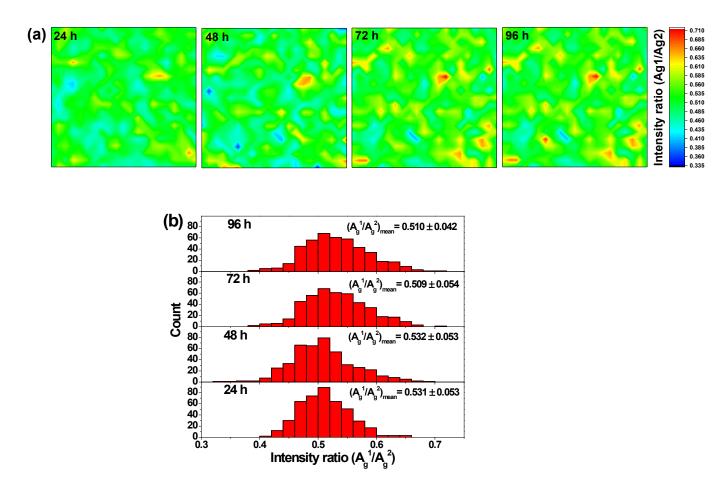
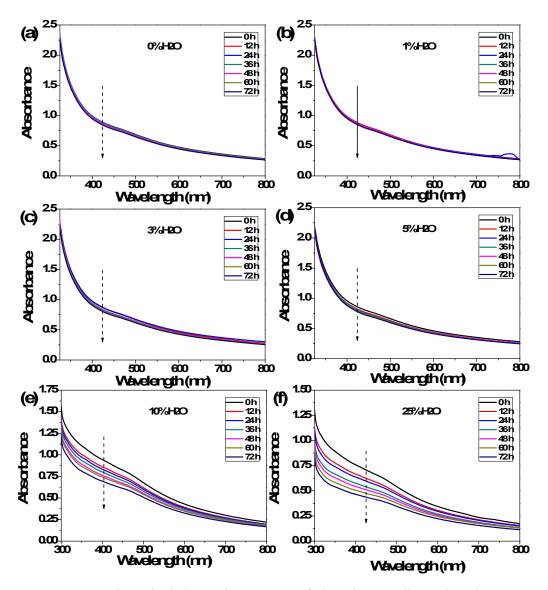




Figure S7. Absorbance spectra of phosphorene dispersions before and after freezing

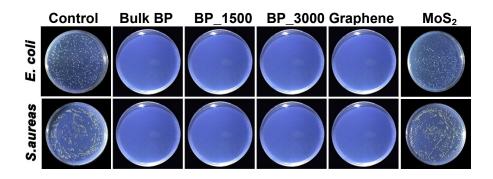

(-5 °C) and heat treatment (80 °C) for 12 h.

Figure S8. (a) Raman maps and (b) histograms of $A_g^{1/}A_g^{2}$ intensity ratios for DMPU exfoliated BP nanosheets after exposure to air for 24, 48, 72, and 96 h.

Figure S9. UV-vis optical absorption spectra of phosphorene dispersions in DMPU ($C_{\rm I}$ = 1 mg mL⁻¹; $t_{\rm sonic}$ = 3 h; CF: 3000 rpm, 30 min) as a function of time with addition of 0 vol.%, 1 vol.%, 3 vol.%, 5 vol.%, 10 vol.%, and 25 vol.% H₂O.

Figure S10. Photographs of bacterial colonies of *E. coli* (top panel) and *S. aureas* (bottom panel) on the agar plates with bulk BP, BP_1500 and BP_3000 nanosheets, graphene, and 2D MoS₂ after irradiation for 10 min.

Table S1. Comparison of BP dispersions stabilized by solvents, surfactants, polymer,

 ionic liquids and other additives.

Dispersion		Exfoliation	Concentration	Dimension	Chemical	Ref.
		condition	(mg mL ⁻¹)		stability	
Solvent	N-methyl-2-	$C_{\rm I}$: 5 mg mL ⁻¹ ;	N/A	Thickness: 3.5-5 nm	N/A	[1]
	pyrrolidone (NMP)	bath		Lateral size: ~100 nm		
		ultrasonication:				
		820 W, 37 kHz, 24				
		h; CF: 1500 rpm,				
		45 min				
		$C_{\rm I}$: 5 mg mL ⁻¹ ;	N/A	N/A	N/A	[2]
		bath				
		ultrasonication:				
		400 W, 48 h; CF:				
		1000-4000 rpm,				
		60 min				
		$C_{\rm I}$: 1 mg mL ⁻¹ ; tip	~0.4	Thickness: 16-128 nm	Relatively stable	[3]
		ultrasonication:			after 7 d of	
		30 W, 1 h; CF:			ambient exposure	
		500-15000 rpm,				
		10 min				
		$C_{\rm I}$: 1 mg mL ⁻¹ ;	N/A	Thickness: ~82 nm	N/A	[4]
		bath		(3000 rpm); ~44 nm		

	ultrasonication:		(3000-5000 rpm); ~3		
	110 W, 40 kHz, 8		nm (10000 rpm)		
	h; CF: 3000 rpm,		Lateral size: few		
	10 min, then 5000		micrometers (3000		
	rpm, 10000 rpm,		rpm); ~500 nm (3000-		
	15 min		5000 rpm); ~200 nm		
			(10000 rpm)		
	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.044 \pm 0.011$	N/A		
	bath				
	ultrasonication:				
	13 h;CF: 3000 g,				
	30 min				
Cyclopentanone	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.037 \pm 0.017$	N/A	N/A	
	bath				
	ultrasonication:				
	13 h;				
	CF: 3000 g, 30				
	min				
1-Cyclohexyl-2-	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.025 \pm 0.007$	N/A	N/A	
pyrrolidone (CHP)	bath				
	ultrasonication:				
	13 h; CF: 3000 g,				

	30 min				
	$C_{\rm I}$: 2 mg mL ⁻¹ ; tip	1	Thickness: ≤10 layers	Partial	[5]
	ultrasonication:		(~70%)	degradation	
	750 W, 60%		Lateral size: 100 nm-3	(<15%)	
	amplitude, 5 h;		mm		
	CF: 1000 rpm, 30				
	min				
1-Dodecyl-2-	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.022 \pm 0.006$	N/A	N/A	[6]
pyrrolidinone	bath				
(N12P)	ultrasonication:				
	13 h; CF: 3000 g,				
	30 min				
Benzyl benzoate	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.032 \pm 0.017$	N/A	N/A	[6]
	bath				
	ultrasonication:				
	13 h; CF: 3000 g,				
	30 min				
1-Octyl-2-	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.037 \pm 0.015$	N/A	N/A	[6]
pyrrolidone (N8P)	bath				
	ultrasonication:				
	13 h; CF: 3000 g,				

		30 min				
-	1-Vinyl-2-	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	~0.062 ± 0.021	N/A	N/A	[6]
	pyrrolidinone (NVP)	bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
	Benzyl ether	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.003 \pm 0.004$	N/A	N/A	[6]
		bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
	1,3-Dimethyl-2-	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.066 \pm 0.01$	N/A	N/A	[6]
	imidazolidinone	bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
	Cyclohexanone	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.003 \pm 0.002$	N/A	N/A	[6]
		bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				

Chlorobenzene	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	~0.0008 ±	N/A	N/A	[6]
	bath	0.001			
	ultrasonication:				
	13 h; CF: 3000 g,				
	30 min				
Dimethylsulfoxide	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.029 \pm 0.002$	N/A	N/A	[6]
(DMSO)	bath				
	ultrasonication:				
	13 h; CF: 3000 g,				
	30 min				
	$C_{\rm I}$: 0.2 mg mL ⁻¹ ;	~0.01	Thickness: 15-20 nm	N/A	[7]
	bath		Lateral size: ~532 nm		
	ultrasonication:				
	130 W, 15 h; CF:				
	200 rpm, 30 min				
Benzonitrile	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.11 \pm 0.017$	N/A	N/A	[6]
	bath				
	ultrasonication:				
	13 h; CF: 3000 g,				
	30 min				
N-methylformamide	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	~0.051 ± 0.018	N/A	N/A	[6]
	bath				

		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
Dime	ethylformamide	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.041 \pm 0.005$	N/A	N/A	[6]
(DMI	F)	bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
		$C_{\rm I}$: 0.2 mg mL ⁻¹ ;	~0.01	Thickness: < 5 nm	N/A	[7]
		bath		(>20%)		
		ultrasonication:		Lateral size: ~190 nm		
		130 W, 15 h; CF:				
		200 rpm, 30 min				
Benz	aldehyde	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.016 \pm 0.014$	N/A	N/A	[6]
		bath				
		ultrasonication:				
		13 h; CF: 3000 g,				
		30 min				
Isopr	opanol (IPA)	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	$\sim 0.039 \pm 0.008$	Thickness:	$\sim 5\%$ of the	[6]
		bath		monolayers (~45%)	phosphorus was	
		ultrasonication:		Lateral size: 0.05-3	oxidized by	
		13 h; CF: 3000 g,		μm	exposure to light	

	30 min			$(\lambda = 460 \text{ nm}) \text{ and}$ oxygen with some water	
	<i>C</i> ₁ : 5 mg mL ⁻¹ ; bath ultrasonication: 400 W, 48 h; CF: 1000-4000 rpm, 60 min	N/A	Thickness: 1-21 nm Lateral size: 50-200 nm	N/A	[2]
	<i>C</i> ₁ : 1 mg mL ⁻¹ ; bath ultrasonication: 300 W, 10 h; CF: 2000 rpm, 60 min	0.034	Thickness: ~3 nm Lateral size: < 1 μm	Relatively stable after 3 months of ambient exposure	[8]
Acetone	<i>C</i> _I : 5 mg mL ⁻¹ ; bath ultrasonication: 400 W, 48 h; CF: 1000-4000 rpm, 60 min	N/A	N/A	N/A	[2]
	<i>C</i> _I : 1 mg mL ⁻¹ ; ultrasonication:	N/A	Thickness: < 100 nm	N/A	[9]

		300 W, 10 h; CF:				
		2000 rpm, 60 min				
	Ethanol	$C_{\rm I}$: 2.5 mg mL ⁻¹ ;	N/A	Thickness: 1-21 nm	N/A	[2]
		bath		Lateral size: 50-200		
		ultrasonication:		nm		
		400 W, 48 h; CF:				
		1000-4000 rpm,				
		60 min				
	γ-	$C_{\rm I}$: 1 mg mL ⁻¹ ;	~0.1	Thickness: ~3 nm	Relatively stable	[8]
	butyrolactone(GBL)	bath		Lateral size: < 1 µm	after 3 months of	
		ultrasonication:			ambient exposure	
		300 W, 10 h; CF:				
		2000 rpm, 60 min				
	Water	$C_{\rm I}$: 1-10 mg mL ⁻¹ ;	~0.4	Thickness: ~9.4 nm	Weak oxidation	[10]
		tip		(2500 rpm); ~5.2 nm	of the BP surface	
		ultrasonication:		(5000 rpm)	in the presence of	
		95-475 W, 30-300		Lateral size: ~200 nm	oxygen	
		min; CF: 1500-				
		5000 rpm, 30 min				
Surfactants	SDS/water	$C_{\rm I}$: 1 mg mL ⁻¹ ;	~0.4	Thickness: 4.5 nm	N/A	[12]
		bath				
		ultrasonication:				

		70 W, 1 h; CF:				
		500-15000 rpm, 2				
		h				
Polymers	PVP/ethanol	$C_{\rm I}: 0.5-10 \text{ mg mL}^-$	~0.66	Thickness: monolayer	Relatively stable	[13]
		¹ ; bath		(~51%)	after 7 d of	
		ultrasonication:		Lateral size: 200 nm-4	ambient	
		400 W, 40 kHz, 3		μm	exposure (3.9	
		h; CF: 3000 rpm,			atom%)	
		30 min				
Ionic liquids	[BMIM][BF ₄]	Grinding for 20	0.29	N/A	N/A	[11]
		min; $C_{\rm I}$: 3 mg mL ⁻				
		¹ ; ice-bath				
		ultrasonication:				
		100 W, 24 h; CF:				
		4000 rpm, 45 min.				
	[BMIM] [TfO]	Grinding for 20	0.22	N/A	N/A	[11]
		min; $C_{\rm I}$: 3 mg mL ⁻				
		¹ ; ice-bath				
		ultrasonication:				
		100 W, 24 h; CF:				
		4000 rpm, 45 min.				
	[BMIM] [Tf ₂ N]	Grinding for 20	0.17	N/A	N/A	[11]

 1			1	1	,
	min; $C_{\rm I}$: 3 mg mL ⁻				
	¹ ; ice-bath				
	ultrasonication:				
	100 W, 24 h; CF:				
	4000 rpm, 45 min.				
[EMIM] [Tf ₂ N]	Grinding for 20	0.1	N/A	N/A	[11]
	min; $C_{\rm I}$: 3 mg mL ⁻				
	¹ ; ice-bath				
	ultrasonication:				
	100 W, 24 h; CF:				
	4000 rpm, 45 min.				
[EMIM][BF ₄]	Grinding for 20	0.75	N/A	N/A	[11]
	min; $C_{\rm I}$: 3 mg mL ⁻				
	¹ ; ice-bath				
	ultrasonication:				
	100 W, 24 h; CF:				
	4000 rpm, 45 min.				
[HMIM]) [BF ₄]	Grinding for 20	0.73	N/A	N/A	[11]
	min; $C_{\rm I}$: 3 mg mL ⁻				
	¹ ; ice-bath				
	ultrasonication:				
	100 W, 24 h; CF:				

		4000 rpm, 45 min.				
	[OMIM] [BF ₄]	Grinding for 20	0.14	N/A	N/A	[11]
		min; $C_{\rm I}$: 3 mg mL ⁻				
		¹ ; ice-bath				
		ultrasonication:				
		100 W, 24 h; CF:				
		4000 rpm, 45 min.				
	[HOEMIM] [TfO]	Grinding for 20	0.95	Thickness: 8-8.9 nm	N/A	[11]
		min; $C_{\rm I}$: 3 mg mL ⁻				
		¹ ; ice-bath				
		ultrasonication:				
		100 W, 24 h; CF:				
		4000 rpm, 45 min.				
	[HOEMIM] [BF ₄]	Grinding for 20	0.91	N/A	N/A	[11]
		min; $C_{\rm I}$: 3 mg mL ⁻				
		¹ ; ice-bath				
		ultrasonication:				
		100 W, 24 h; CF:				
		4000 rpm, 45 min.				
Others	Phytic acid/DMF	$C_{\rm I}$: 1 mg mL ⁻¹ ;	N/A	Thickness: ~3-4 nm	N/A	[14]
		bath		Lateral size: ~4-28 µm		
		ultrasonication:				

		50 kHz, 8 h; CF: 2000 rpm, 5 min				
Na	aOH/NMP	$C_{\rm I}$: 0.5 mg mL ⁻¹ ;	N/A	Thicknesses: 5.3 ± 2.0	N/A	[15]
		ultrasonication:		nm (3000 rpm); 2.8 ±		
		40 kHz, 4 h; CF:		1.5 nm (18000 rpm)		
		3000 rpm, 10 min;		Lateral size: 670 nm		
		12000 rpm, 20		(12000 rpm); 210 nm		
		min; 18000 rpm,		(18000 rpm)		
		20 min				

Reference

[1] J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, P. O'Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. *Chem. Commun.* **2014**, *50*, 13338-13341.

[2] S. H. Lin, S. H. Liu, Z. B. Yang, Y. Y. Li, T. W. Ng, Z. Q. Xu, Q. L. Bao, J. H. Hao, C. S. Lee, C. Surya, F. Yan, S. P. Lau, Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. *Adv. Funct. Mater.* **2016**, *26*, 864-871.

[3] J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. L. Liu, K. S. Chen, M. C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. *ACS Nano* **2015**, *9*, 3596-3604.

[4] D. J. Late, Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. *Micropor. Mater.* **2016**, *225*, 494-503.

[5] D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. F. Zhang, K. P. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O'Regan, G. S. Duesberg, V. Nicolosi, J. N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. *Nat. Commun.* 2015, *6*, 8563.

[6] A. H. Woomer, T. W. Farnsworth, J. Hu, R. A. Wells, C. L. Donley, S. C. Warren, Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. *ACS Nano* **2015**, *9*, 8869-8884.

[7] P. Yasaei, B. Kumar, T. Foroozan, C. H. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, A. Salehi-Khojin, High-quality black phosphorus atomic layers by liquid-phase exfoliation. *Adv. Mater.* **2015**, *27*, 1887.

[8] C. X. Hao, F. S. Wen, J. Y. Xiang, S. J. Yuan, B. C. Yang, L. Li, W. H. Wang, Z. M. Zeng, L. M. Wang, Z. Y. Liu, Y. J. Tian, Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. *Adv. Func. Mater.* **2016**, *26*, 2016-2024.

[9] C. Hao, B. Yang, F. Wen, J. Xiang, L. Li, W. Wang, Z. Zeng, B. Xu, Z. Zhao, Z. Liu, Flexible all-solid-state supercapacitors based on liquid-

exfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194.

[10]L. Chen, G. M. Zhou, Z. B. Liu, X. M. Ma, J. Chen, Z. Y. Zhang, X. L. Ma, F. Li, H. M. Cheng, W. C. Ren, Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. *Adv. Mater.* **2016**, *28*, 510.

[11] W. C. Zhao, Z. M. Xue, J. F. Wang, J. Y. Jiang, X. H. Zhao, T. C. Mu, Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. *ACS Appl. Mater. Interfaces* **2015**, *7*, 27608-27612.

[12] J. Kang, S. A. Wells, J. D. Wood, J. H. Lee, X. L. Liu, C. R. Ryder, J. Zhu, J. R. Guest, C. A. Husko, M. C. Hersam, Stable aqueous dispersions of optically and electronically active phosphorene. *PNAS* **2016**, *113*, 11688-11693.

[13]Y. Zhang, N. Dong, H. Tao, C. Yan, J. Huang, T. Liu, A. W. Robertson, J. Texter, J. Wang, Z. Sun, Exfoliation of stable 2D black phosphorous for device fabrication. *Chem. Mater.* **2017** *29*, 6445–6456.

[14] J. Y. Xu, L. F. Gao, C. X. Hu, Z. Y. Zhu, M. Zhao, Q. Wang, H. L. Zhang, Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. *Chem. Commun.* **2016**, *52*, 8107-8110.

[15]Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. *Adv. Funct. Mater.* **2015**, *25*, 6996-7002.