Electronic Supplementary Information

Multifunctional Mixed Valence N-doped CNT@MFe₂O₄ Hybrid Nanomaterials: From Engineered One-Pot Coprecipitation to Application in Energy Storage Paper Supercapacitors

Clara Pereira,^{*,a} Rui S. Costa,^{a,b} Laury Lopes,^a Belén Bachiller-Baeza,^c Inmaculada Rodríguez-Ramos,^c Antonio Guerrero-Ruiz,^d Pedro B. Tavares,^e Cristina Freire,^a and André M. Pereira^{*,b}

- a REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- ^b IFIMUP and IN Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Catálisis y Petroleoquímica, CSIC, C/ Marie Curie 2, Cantoblanco, 28049 Madrid,
 Spain
- ^d Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
- ^e Departamento de Química and CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801
 Vila Real, Portugal

*Corresponding authors:

Dr. Clara Pereira: Tel: +351 220402576; Fax: +351 220402659; e-mail: <u>clara.pereira@fc.up.pt</u> Prof. André M. Pereira: Tel: +351 220402369; Fax: +351 220402406; e-mail: <u>ampereira@fc.up.pt</u>

Physicochemical characterization (additional information):

TEM: The samples were dispersed in high-purity absolute ethanol under sonication, after which a carbon-coated 400 mesh copper grid was immersed in the suspension and then air-dried.

XPS: A pass energy of 80 eV was used for the survey spectra (step size = 1.0 eV) and 40 eV for the regions of interest (ROI, step size = 0.1 eV). Data acquisition was performed using VISION software at a pressure lower than 1×10^{-6} Pa. Electrostatic charging effects were corrected using a charge neutralization system. The surface atomic percentages were calculated from the corresponding peak areas using the sensitivity factors provided by the manufacturer.

Electrical conductivity measurements: In order to study the intrinsic electrical conductivity (σ) of the as-prepared nanomaterials, the samples were pressed into 13 mm diameter pellets using a laboratory hydraulic press (2 ton, 10 sec), without performing any dilution step (*i.e.*, without previous dispersion in a polymeric matrix).

	C 1s		N 1s		O 1s		Fe 2p _{3/2}		Fe 2p _{1/2}		Co 2p _{3/2}		Co 2p _{1/2}	
Material	BE	Area	BE	Area	BE	Area	BE	Area	BE	Area	BE	Area	BE	Area
	(eV) ^b	(%) ^c	(eV) ^b	(%) ^c	(eV) ^b	(%) ^c	(eV) ^b	(%) ^c	(eV) ^b	(%) ^c	(eV) ^b	(%) ^c	(eV) ^b	(%)°
CNT-N	284.6 (0.9)	44.0	398.4 (1.9)	20.3	530.8 (2.3)	43.6	711.6 (4.5)	100.0	n.d. ^d	n.d. ^d	_	_	_	_
	285.1 (1.4)	22.6	400.0 (1.9)	21.9	532.7 (2.3)	51.8								
	286.2 (1.4)	12.1	401.3 (1.9)	43.1	535.6 (2.3)	4.6								
	287.3 (1.4)	5.4	403.7 (1.9)	10.4										
	288.6 (1.4)	2.4	406.5 (1.9)	4.3										
	290.6 (4.8)	13.5												
CNT- N@Co	284.6 (0.8)	41.3	398.3 (1.7)	16.9	530.0 (1.3)	59.1	710.8 (2.9) ^e	37.2	724.1 (2.9) ^e	14.9	780.1 (2.0) ^e	27.0	795.8 (2.0) ^e	13.4
	285.1 (1.3)	23.4	399.7 (1.7)	24.3	531.4 (1.3)	24.6	713.3 (2.9) ^f	14.5	726.6 (2.9) ^f	7.2	781.8 (2.0) ^f	9.2	797.5 (2.0) ^f	4.6
	286.1 (1.3)	12.3	401.3 (1.7)	44.7	532.4 (1.3)	11.6	718.8 (7.1) ^g	17.5	732.1 (7.1) ^g	8.7	786.9 (5.1) ^g	30.6	802.6 (5.1) ^g	15.2
	287.2 (1.3)	5.6	403.5 (1.7)	11.1	533.5 (1.3)	4.7								
	288.5 (1.3)	3.1	406.0 (1.7)	3.0										
	290.6 (4.8)	14.3												
CoFe ₂ O ₄	283.7 (1.6)	12.9	400.0 (1.7)	22.3	530.0 (1.3)	57.8	710.8 (2.9) ^e	32.5	724.1 (2.9) ^e	12.9	780.1 (2.1) ^e	24.6	795.8 (2.1) ^e	12.2
	285.4 (1.6)	54.1	403.2 (1.7)	77.7	531.5 (1.3)	29.0	713.3 (2.9) ^f	14.1	726.6 (2.9) ^f	7.0	781.9 (2.1) ^f	7.6	797.6 (2.1) ^f	3.8
	286.9 (1.6)	21.9			532.5 (1.3)	12.6	718.8 (8.1) ^g	22.3	732.1 (8.1) ^g	11.2	786.9 (6.3) ^g	34.5	802.6 (6.3) ^g	17.3
	288.6 (1.6)	11.1			533.7 (1.3)	0.6								

Table S1. Core-level binding energies and areas of the main components for CNT-N based nanomaterials obtained by curve fitting of XPS spectra^a

^a The core-level binding energies and areas of the trace components in the F 1s and Si 2p regions are presented in the Supporting Information. ^b The values between brackets refer to the FWHM of the bands.

^c Area of each component relative to the total core-level peak area.

^d n.d. – not detected.

^e Metal cations located in octahedral sites.

^f Metal cations located in tetrahedral sites

^f Shake-up satellite peak.

	F 1s		Si 2p ₃	/2	Si 2p _{1/2}		
Material	BE		BE	Area	BE	Area	
	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	(eV) ^a	(%) ^b	
CNT-N	685.7 (4.2)	100	102.4 (2.0)	66.7	103.0 (2.0)	33.3	
CNT-N@Co	684.4 (2.0)	100	101.6 (3.0)	66.7	102.2 (3.0)	33.3	

Table S2. Core-level binding energies and areas of the components in the F 1s and Si 2p regions for CNT-N based nanomaterials obtained by curve fitting of XPS spectra

^a The values between brackets refer to the FWHM of the bands.

^b Area of each component relative to the total core-level peak area.

Table S3. Comparison of the energy storage performance of the paper SCs prepared in this work with that of other paper-based SCs recently reported in the literature^a

Substrate	Electrode Materials	Electrolvte	Fabrication	Specific capacitance	Energy	Power	Ref.
			process	of the SC cell	density	density	
Nylon filter paper	CNT-N//CNT-N	PVA/H ₃ PO ₄	Vacuum filtration	21.58 F cm ⁻³ at 0.5 mV s ⁻¹	1.44 mW h cm ⁻³	39.53 mW cm ⁻³	
				110.36 mF cm ⁻²	7.37 μW h cm ⁻²	202.16 µW cm ⁻²	
	CNT-N//CNT-N@Co	PVA/H ₃ PO ₄	Vacuum filtration	14.73 F cm ⁻³ at 0.5 mV s ⁻¹	4.05 mW h cm ⁻³	170.44 mW cm ⁻³	
				53.30 mF cm ⁻²	14.65 µW h cm ⁻²	616.73 μW cm ⁻²	
	CNT-N//CNT-N@Mn	PVA/H ₃ PO ₄	Vacuum filtration	25.69 F cm ⁻³ at 0.5 mV s ⁻¹	4.04 mW h cm ⁻³	44.42 mW cm ⁻³	
				123.59 mF cm ⁻²	19.45 µW h cm ⁻²	213.73 μW cm ⁻²	This
	CNT-N//CNT-N@Fe	PVA/H ₃ PO ₄	Vacuum filtration	20.45 F cm ⁻³ at 0.5 mV s ⁻¹	7.85 mW h cm ⁻³	84.17 mW cm ⁻³	work
				89.44 mF cm ⁻²	34.31 µW h cm ⁻²	368.09 μW cm ⁻²	
	+CNT-N@Fe//CNT-N@Mn-	PVA/H ₃ PO ₄	Vacuum filtration	22.91 F cm ⁻³ at 0.5 mV s ⁻¹	8.63 mW h cm ⁻³	55.68 mW cm ⁻³	
				95.06 mF cm ⁻²	35.81 µW h cm ⁻²	230.99 μW cm ⁻²	
	+CNT-N@Mn//CNT-N@Fe-	PVA/H ₃ PO ₄	Vacuum filtration	21.32 F cm ⁻³ at 0.5 mV s ⁻¹	6.20 mW h cm ⁻³	42.96 mW cm ⁻³	
				88.46 mF cm ⁻²	25.71 µW h cm ⁻²	178.19 μW cm ⁻²	
Cellulose filter	graphene nanosheets ink	PVA/H ₂ SO ₄	Vacuum	46 mF cm ⁻² (laminated, one cell)	—	_	[1]
paper			filtration	17 mF cm ⁻² (laminated, 3 in-series units)	15 µW h cm ⁻² (3	$<100 \ \mu W \ cm^{-2} (3)$	
					in-series units)	in-series units)	
Air-laid	CNT ink	КОН		$35 \text{ mF cm}^{-2} \text{ at } 1 \text{ mA cm}^{-2}$	—	_	[2]
paper	CNT ink/MnO ₂	KOH	Din-and-dry	$123 \text{ mF cm}^{-2} \text{ at } 1 \text{ mA cm}^{-2}$	4.2 μW h cm ⁻²	4000 µW cm ⁻²	
(composed of	CNT ink/MnO ₂	PVA/KOH	process	$73 \text{ mF cm}^{-2} \text{ at } 0.6 \text{ mA cm}^{-2}$	1.8 µW h cm ⁻²	$\sim 127 \ \mu W \ cm^{-2 \ b}$	
cellulose and			process				
polyester fibers)							
Commercial	+Ni(OH) ₂ /Ni/graphite//	PVA/NaOH	Spray + pencil	3.05 F cm ⁻³ at 10 mV s ⁻¹	0.35 mW h cm ⁻³	32.5 mW cm^{-3}	[3]
cellulose paper	Mn ₃ O ₄ /Ni/graphite-		drawing +				
			electrodeposition				
Laboratory	+MnO ₂ /Ni//AC/Ni-	PVA/Na ₂ SO ₄	electroless	$2.0 \text{ F cm}^{-3} \text{ at } 5 \text{ mV s}^{-1}$	0.78 mW h cm ⁻³	2.5 mW cm^{-3}	[4]
filter paper			plating method	700 mF cm^{-2}			
			electrodeposition				
Lab-made	Graphene/PANI	H_2SO_4	Vacuum filtration	1320 mF cm ⁻² at 0.25 mA cm ⁻²	120 µW h cm ⁻²	100 µW cm ⁻²	[5]
bacterial					18 µW h cm ⁻²	4450 μW cm ⁻²	
cellulose paper							

^a AC – activated carbon; NWs – nanowires; PANI – polyaniline; PPy – polypyrrole. ^b Estimated by eye.

Fabrication **Specific capacitance** Power Energy Substrate **Electrode Materials** Electrolyte Ref. process of the SC cell density density H_2SO_4 1.13 mF cm⁻² at 200 mA g⁻¹ [6] Xerox paper Graphite pencil Pencil drawing In-house paper Graphite pencil H_2SO_4 Pencil drawing 2.3 mF cm⁻² at 200 mA g⁻¹ [6] Xerox paper Thin graphite sheets PVA/H₃PO₄ Pencil drawing + 52.9 F cm⁻³ at 1 mV s⁻¹ [7] (pencil)/PPy electrodeposition ~11.3 mF cm⁻² at 1 mV s⁻¹ A4 Xerox paper Exfoliated graphene ink PVA/H₂SO₄ Paintbrush [8] coating Cellulose Positively-charged PANI PVA/H₂SO₄ 5.72 mF cm⁻² at 2 mV s⁻¹ [9] Dip-coating, NWs followed by negativelynanofiber paper layer-by-layer charged reduced graphene oxide nanosheets

Table S3 (cont.). Comparison of the energy storage performance of the paper SCs prepared in this work with that of other paper-based SCs recently reported in the literature^a

^a AC – activated carbon; NWs – nanowires; PANI – polyaniline; PPy – polypyrrole. ^b Estimated by eye.

Fig. S1. Electrical conductivity as a function of the frequency of the CNT-N based nanomaterials in the frequency range of 20 Hz to 3 MHz.

Fig. S2. Cyclic voltammograms of CNT-N//CNT-N paper SC at different scan rates.

References

- 1 Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du and H.-M. Cheng, Adv. Energy Mater., 2011, 1, 917–922.
- L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang, E. Zhou, F. Kang and Q.-H. Yang, *Adv. Mater.*, 2016, 28, 9313–9319.
- 3 J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong and G.-R. Li, ACS Appl. Mater. Interf., 2015, 7, 11444–11451.
- 4 L. Zhang, P. Zhu, F. Zhou, W. Zeng, H. Su, G. Li, J. Gao, R. Sun and C.-P. Wong, ACS Nano, 2016, 10, 1273–1282.
- 5 R. Liu, L. Ma, S. Huang, J. Mei, J. Xu and G. Yuan, New J. Chem., 2017, 41, 857–864.
- 6 G. Zheng, L. Hu, H. Wu, X. Xie and Y. Cui, *Energy Environ. Sci.*, 2011, 4, 3368–3373.
- 7 J. Tao, W. Ma, N. Liu, X. Ren, Y. Shi, J. Su and Y. Gao, Nano-Micro Lett., 2015, 7, 276–281.
- 8 K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng and K. Müllen, J. Am. Chem. Soc., 2014, 136, 6083–6091.
- 9 X. Wang, K. Gao, Z. Shao, X. Peng, X. Wu and F. Wang, J. Power Sources, 2014, 249, 148–155.