Supporting information

Considerably enhanced exciton emission of CsPbCl₃ perovskite quantum dots by introduction of potassium and lanthanide ions

Yanan Liu,^{#a,b} Gencai Pan,^{#a} Rong Wang,^b He Shao,^b He Wang,^b Wen Xu,^a

Haining Cui^{*b} and Hongwei Song^{*a}

These authors contributed equally to this work

^aState Key Laboratory on Integrated Optoelectronics, College of Electronic Science

and Engineering, Jilin University, Changchun 130012, China.

*E-mail: songhw@jlu.edu.cn

^bCollege of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China. *E-mail: cuihaining2009@126.com

Figure S1. (a) The PL spectra of the $Cs_xK_{1-x}PbCl_3$ and $Cs_xK_{1-x}PbCl_3$: Eu^{3+} QDs. (b) The PL spectra of the $Cs_xK_{1-x}PbCl_3$: RE^{3+} ($RE=Eu^{3+}, La^{3+}, Lu^{3+}, Y^{3+}$) QDs.

Figure S2. The PL spectrum of the $Cs_xK_{1-x}PbCl_3$: Eu^3 (Cs:K=1:4) QDs.

Figure S3. The PL Excitation spectra of the $Cs_xK_{1-x}PbCl_3$ and $Cs_xK_{1-x}PbCl_3$: RE^{3+} (RE=Eu, La, Lu, Y) QDs.

Figure S4. The tauc plots of the $Cs_xK_{1-x}PbCl_3$ (Cs:K=1:0, Cs:K=1:1, Cs:K=1:2, Cs:K=1:4) and $Eu^{3+}doped Cs_xK_{1-x}PbCl_3$ (Cs:K=1:4) QDs.

Figure S5. (a) The absorption spectra of $Eu^{3+}doped Cs_xK_{1-x}PbCl_3$ (Cs:K=1:1, Cs:K=1:2, Cs:K=1:4) QDs. (b) The PL spectra of $Eu^{3+}doped Cs_xK_{1-x}PbCl_3$ (Cs:K=1:1, Cs:K=1:2, Cs:K=1:4) QDs. (c) The fluorescent decay dynamics of $Eu^{3+}doped Cs_xK_{1-x}PbCl_3$ (Cs:K=1:1, Cs:K=1:2, Cs:K=1:4) QDs.

Figure S6. XRD patterns of lanthanide ions $(La=Y^{3+}, La^{3+}, La^{3+})$ doped $Cs_xK_{1-x}PbCl_3$ (Cs:K=1:4)QDs.

Figure S7. The representative TEM images of Eu^{3+} doped $Cs_xK_{1-x}PbCl_yBr_{3-y}$ (Cs:K=1:4)QDs.

Figure S8. The representative TEM images of the samples with different temperatures 185, 200 and 220°C.

Table.S1 The average lifetime of different perovskite QDs under excitation at 365 nm. The monitoring position are all at 410nm.

Sample Lifetime	A ₁ (%)	τ ₁ (ns)	A ₂₍ %)	τ ₂ (ns)	τ_{ave}
CsPbCl 3	56.33	1.89	43.67	9.86	8.28
CsPbCl ₃ (Cs:K=1:1)	54.23	2.37	45.77	12.55	10.69
CsPbCl ₃ (Cs:K=1:2)	52.22	2.10	47.78	15.33	13.60
CsPbCl ₃ (Cs:K=1:4)	47.82	1.65	52.18	14.19	12.98
CsPbCl ₃ :Eu(50%)(Cs:K=1:1)	42.53	3.00	57.47	16.04	14.45
CsPbCl ₃ :Eu(50%)(Cs:K=1:2)	24.81	1.96	75.19	15.78	15.24
CsPbCl ₃ :Eu(50%)(Cs:K=1:4)	23.86	1.68	76.32	10.97	10.55
CsPbCl ₃ :La(50%)(Cs:K=1:4)	52.48	1.95	47.52	10.76	9.29
CsPbCl ₃ :Lu(50%)(Cs:K=1:4)	48.96	3.28	51.04	16.28	14.17
CsPbCl ₃ :Y(50%)(Cs:K=1:4)	69.01	1.55	30.99	14.92	12.41

Note: lifetimes are acquired by fitting the decay curves from the function of $I(t) = I_1$ exp(-t/ τ_1)+ $I_2 \exp(-t/\tau_2)$; the average lifetimes were got by $\tau_{ave} = a_1\tau_1^2 + a_2\tau_2^2/(a_1\tau_{1+}a_2\tau_2)$