Journal Name

ARTICLE

Supporting Information

Birefringence and linear dichroism of TiS₃ nanosheets

Nikos Papadopoulos^{1*}, Riccardo Frisenda², Robert Biele,³ Eduardo Flores,⁴ Jose R. Ares,⁴ Carlos Sanchez,^{4,5} Herre S. J. van der Zant,¹ Isabel J. Ferrer,^{4,5} Roberto D'Agosta,^{3,6*} and Andres Castellanos-Gomez^{7*}

¹ Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands.

² Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus de Cantoblanco, E-28049 Madrid, Spain.

³ Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco UPV/EHU, 20018 San Sebastián, Spain.

⁴ Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco, E-28049 Madrid, Spain.

⁵ Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco E-28049 Madrid, Spain.

⁶ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.

⁷ Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, E-28049 Madrid, Spain.

ARTICLE

Fig. S1. Optical images (a, b and c) and AFM topography of the thin TiS_3 flakes (d, e and f). The thickness of these flakes is less than 10 nm.

Fig. S2. Schematic of the Micro-reflectance setup used in this work.

2 | J. Name., 2012, **00**, 1-3

ARTICLE

Fig. S3. (a-c) Contrast of various flakes as a function of wavelength for different polarization angles.

Journal Name

Fig. S4. Optical contrast spectra from a flake with thickness of 84.8 nm using linearly polarized light parallel to the *b*-axis. The yellow curve corresponds to the simulated spectra based on the Fresnel model using the obtained values of the refractive index that are shown in Fig.5.

Fig. S5. Raman spectra of a TiS_3 nanoribbon on SiO_2/Si substrate (top) and of TiS_3 powder (bottom). The spectra show similar peaks due to TiS_3 vibrations. The spectrum of the individual TiS_3 flake shows an additional peak at 520 cm⁻¹ due to the Si substrate. While the energy of the peaks does not change when going from powder to an individual nanoribbon, the relative intensity

Journal Name

of the peaks is different. This change is due to the different thicknesses probed in the powder sample compared to the individual flake.

Fig. S6. Comparison between the two components of the polarized complex refractive index extracted from the measurements (thick lines) and calculated with *ab initio* calculations (RPA left, BSE right).