Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Controllable Dynamics of Oxygen Vacancies through Extrinsic Doping for Superior Catalytic Activities

Adnan Younis^{a*}, Sagar E. Shirsath^a, Babar Shabbir^{b,c} and Sean Li^a

^aSchool of Materials Science and Engineering, University of New South Wales, Sydney, 2052, NSW, Australia

^bDepartment of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia ^cCollege of Electronic Science and Technology and College of Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China

*Corresponding Author: <u>a.younis@unsw.edu.au</u>

Supporting Information

Figure S1: SEM-EDX mapping images of the GDC-15 sample, showing random distribution of Gd, Ce and O.

Sample Name	Ce Atom%	Gd (Atom%	Ce Atom% (EDS)	Gd (Atom%
	(Set)	(Set)		(EDS)
GDC-05	95	05	94.00	6.00
GDC-10	90	10	88.7	11.3
GDC-15	85	15	84.0	16.0
GDC-20	80	20	78.5	21.5
GDC-25	75	25	76.00	24.0
GDC-30	70	30	67.0	33.0

Table T1: The compositions of the as-prepared samples were determined by Energy Dispersive X-ray spectra. The results are generally consistent with the expected ratio between Ce and Gd.

Figure S2: XPS spectra of Ce 3d of Gd-doped CeO₂ samples with different ratios of Ce:Gd.

UV-vis diffuse reflectance spectroscopy

To extract the surface coordination and oxidation states of metal ions (Ce ions) in as-prepared three samples (GDC-0, GDC-15 and GDC-30), UV–vis diffuse reflectance spectroscopy was carried out and the results are depicted in figure S3. The maxima appeared at 255 nm correspond to O^{2-} to Ce^{3+} charge transfer transitions, whereas the maximum at 285 nm and 340 nm may be due to O^{2-} to Ce^{4+} charge transfer and interband transitions[1]. The increased absorption intensity with Gd doping level indicates that the Ce^{4+} substitution with Gd^{3+} ions indeed facilitates the formation of Ce^{3+} , which generates more oxygen vacancies in the samples for charge compensation mechanism.

Figure S3: UV-vis diffuse reflectance spectra of GDC-O, GDC-15 and GDC-30 samples.

Figure S4: Plot of -ln (C/C₀) vs irradiation time for GDC-15 at 100 °C under UV light

Figure S5: (a) Bulk ionic ac conductivity versus inverse temperature for GDC-0, GDC-15 and GDC-30 samples (b) Calculated activation energy values for all GDC-samples.

References:

1. Reddy, B.M., et al., *Structural Characterization and Catalytic Activity of Nanosized CexM1* $xO2 (M = Zr \text{ and } Hf) \text{ Mixed Oxides. The Journal of Physical Chemistry C, 2008.$ **112**(31): p. 11729-11737.