Supplementary Information (SI)

New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices

^{1,2}Manickam Minakshi*, ³David R.G. Mitchell, ²Anji Reddy Munnangi, ⁴Anders Barlow and ²Maximilian Fichtner*

¹School of Engineering and Information Technology, Murdoch University, WA 6150, Australia ²Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Ulm 89081, Germany

³Electron Microscopy Centre, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia

⁴Centre for Materials and Surface Science, La Trobe University, Bundoora, VIC 3086, Australia

The supplementary information (SI) contains three figures (Figs. S1 - Fig. S3).

18021403 Manickam Minakshi S MgMoO4 maps of 00 Phase1

Quantitative Results for: 18021403 Manickam Minakshi S MgMoO4 maps of 00 Phase1

Element Line	Net Counts	Net Counts Error	K-Factor	Weight %	Weight % Error	Atom %	Atom % Error	
СК	0	0						
ОК	30587	± 212						
Mg K	31439	± 207	1.161	21.01	± 0.14	51.00	± 0.34	
Ca K	939	± 51	0.889	0.48	± 0.03	0.71	± 0.04	
Ca L	0	± 43						
Fe K	751	± 111						
Fe L	0	0						
Со К	684	± 118						
Co L	0	± 45						
Cu K	10202	± 211						
Cu L	469	± 63						
Мо К	10241	± 298						
Mo L	79827	± 582	1.709	78.51	± 0.57	48.29	± 0.35	
Mo M	3596	± 56						
Total				100.00		100.00		

18021403 Manickam Minakshi S MgMoO4 maps of 00 Phase2

Phase4

Element	Net	Net Counts	K-Factor	Weight %	Weight %	Atom %	Atom %
Line	Counts	Error			Error		Error
СК	75	± 54					
ОК	11129	± 124					
Mg K	27723	± 192		31.57	± 0.22	64.33	± 0.45
Ca K	791	± 54		0.49	± 0.03	0.60	± 0.04
Ca L	0	± 33					
Fe K	981	± 134					
Fe L	131	± 85					
Со К	1098	± 140					
Co L	0	± 36					
Cu K	13570	± 243					
Cu L	396	± 54					
Мо К	14235	± 358					
Mo L	101798	± 559		67.94	± 0.37	35.07	± 0.19
Mo M	1083	± 52					
Total				100.00		100.00	

Red and green phases are the same – the green phase composition is compromised by absorption – due to the particles being so large. The thin (red phase) regions have been analysed in Phase 4 above.

Figure S2 EELS spectra of the thin-plate like MgMoO₄ particles shown in the main article (Fig. 3k).

Figure S3 Wide-scan XPS of the magnesium molybdate (MgMoO₄)