Supplementary Information

Porous CaFe₂O₄ as a promising lithium ion battery anode: a

trade-off between high capacity and long-term stability

Chunhua Han,* Xiao Zhang, Xiaoming Xu, Qi Li, Qiu He, Jiashen Meng, Xuanpeng Wang, Ziang Liu, Peijie Wu and Liqiang Mai*

Prof. C. Han, X. Zhang, Dr. X. Xu, Dr. Q. Li, Q. He, Dr. J. Meng, Dr. X. Wang, Dr. Z. Liu, P. Wu, Prof. L. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China *E-mail: hch5927@whut.edu.cn (Prof. C. H. Han); mlq518@whut.edu.cn (Prof. L. Q.

Mai)

‡These authors contributed equally to this work.

Fig. S1 XRD patterns of the CaFe₂O₄ calcined at different temperatures for 5 h in air.

Fig. S2 SEM images of the CaFe₂O₄ calcined at 600 °C (a, d), 700 °C (b, e), 800 °C (c, f) for 5 h in air.

Fig. S3 XRD patterns of the Fe_2O_3 (a) and $MgFe_2O_4$ (b) calcined at 800 °C for 5 h in air.

Fig. S4 SEM images of the Fe_2O_3 (a, c) and $MgFe_2O_4$ (b, d) calcined at 800 °C for 5 h in air.

Fig. S5 TGA and DSC curves of the commercial $Ca(NO_3)_2 \cdot 4H_2O$ (a) and $Mg(NO_3)_2 \cdot 6H_2O$ (b).

Fig. S6 Cycling performance of the $CaFe_2O_4$ calcined at 800 °C for 5 h tested at a current density of 1 A g⁻¹.

Fig. S7 Nyquist plots of CaFe₂O₄ and Fe₂O₃ after 5 cycles.

Fig. S8 (a) TEM image, (b) SAED pattern of $CaFe_2O_4$ at the delithiation state at 0.5 A g⁻¹ after 5 cycles.

Fig. S9 In situ XRD results of $CaFe_2O_4$ during the initial discharge process.

	Graphite	CaFe ₂ O ₄	Fe ₂ O ₃	Silicon
Theoretical capacity (mA h g ⁻¹)	372	770	1007	4200
Reaction mechanism	Insertion	Conversion	Conversion	Alloying
Density(g cm ⁻³)	2.25	4.8	5.26	2.34
Volume change	~10%	<96%	~96%	~400%
Price	Commercial	Low preparation cost	Low preparation cost	High preparation cost
Cycling performance without modification	excellent	excellent	Significant capacity decay	Significant capacity decay

Tab. S1 Comparison of properties between the $CaFe_2O_4$ (this work), graphite, Fe_2O_3 and Silicon.

Morphologies	Voltage range (V)	Current density (A g ⁻¹)	Retained capacity (mA h g ⁻¹)	Reference
Porous CaFe ₂ O ₄	0.01-3	0.1	816 (100 cycles)	Our work
		0.5	532 (1000 cycles)	
		1	404 (900 cycles)	
Mesoporous Fe ₂ O ₃	0.05.2	0.1	1176 (200 cycles)	[1]
	0.05-5	1	744 (500 cycles)	
3D net-like FeO _x /C	0.01-3	0.2	851 (50 cycles)	[2]
		1	714 (300 cycles)	
α-Fe ₂ O ₃ void@frame microframes	0.05-3	0.2	700 (550 cycles)	[3]
porous a-Fe ₂ O ₃ nanorods	0.01.2	0.2	740 (300 cycles)	[4]
	0.01-3	1	600 (300 cycles)	
Core–Shell Fe/Fe ₂ O ₃ Nanowire		0.1	872 (100 cycles)	[5]
	0.01-3	0.5	767 (200 cycles)	
a-Fe ₂ O ₃	0.01-3	0.1	617 (100 cycles)	[6]
		0.1	968 (100 cycles)	
Ultrathin Fe ₂ O ₃ nanoflakes	0.05-3	0.1	1043 (100 cycles)	[7]
		5	578 (500 cycles)	

Tab. S2 Electrochemical performance comparison of the porous $CaFe_2O_4$ (this work) with various Fe-based anodes.

References

- [1] W. Guo, W. Sun, L.-P. Lv, S. Kong, Y. Wang, ACS Nano, 2017, 11, 4198-4205.
- [2] M. Li, H. Du, L. Kuai, K. Huang, Y. Xia, B. Geng, *Angew. Chem., Int. Ed.*, 2017, 129, 12823-12827.
- [3] J. Zhu, D. Deng, J. Mater. Chem. A, 2016, 4, 4425-4432.
- [4] Y. Zhu, Q. Wang, X. Zhao, B. Yuan, RSC Adv., 2016, 6, 97385-97390.
- [5] Z. Na, G. Huang, F. Liang, D. Yin, L. Wang, *Chem.-Eur. J.*, 2016, 22, 12081-12087.
- [6] P. Santhoshkumar, K. Prasanna, Y.N. Jo, I.N. Sivagami, S.H. Kang, C.W. Lee, J.
- Mater. Chem. A, 2017, 5, 16712-16721.
- [7] Y. Wang, J. Han, X. Gu, S. Dimitrijev, Y. Hou, S. Zhang, J. Mater. Chem. A, 2017, 5, 18737-18743.