Supporting Information(SI):

Well-Dispersed Ultrasmall VC Nanoparticles Embedded in Ndoped Carbon Nanotube as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction

Liyun Cao, Ning Zhang, Liangliang Feng,* Jianfeng Huang,* Yongqiang Feng, Wenbin Li, Dan Yang, and Qianqian Liu

School of Materials Science & Engineering, Shaanxi University of Science & Technology,

Xi'an Shaanxi 710021, P.R. China.

E-mail: fengll@sust.edu.cn; huangjf@sust.edu.cn

Fig. S1. XRD patterns of samples carbonized in different temperatures.

Fig. S2. XRD patterns of VC@NCNT (700°C) and VC nanoparticles.

Fig. S3. High-resolution Co 2p XPS spectra for the VC@NCNT.

Table S1. Surface elements contents of samples carbonized in different temperatures obtained

Catalyst	C 1s	O 1s	V 2p	N 1s
700℃	84.04 %	7.98%	0.65%	5.29%
800℃	86.17%	7.76%	1.09%	3.32%
900℃	90.15%	5.89%	0.59%	3.17%
1000°C	87.61%	6.51%	0.81%	3.11%

by XPS.

Fig. S4. SEM images of samples carbonized in different temperatures: (A) 500°C; (B) 600°C; (C) 700°C; (D) 800°C; (E) 900°C; (F) 1000°C.

Fig. S5. (A) TEM images, (B) HRTEM images of VC.

Fig. S6. (A-G) TEM images, HRTEM images of VC@NCNT.

Table S2 Comparison	n of charge	transfer resistance	(R _{ct}) values	of all samples
---------------------	-------------	---------------------	---------------------------	----------------

Catalyst	R _{ct} (Ω/cm ²) Acid medium (η=259 mV)	$R_{ct} (\Omega/cm^{2})$ Alkaline medium $(\eta=213 \text{ mV})$	
VC@NCNT	22	138.8	
Co-NRCNTs	153.8	434.8	
VC	1522	1201	

Fig. S7. XRD patterns of VC@NCNT (Ni) and VC@NCNT (Fe).

Fig. S8. (A-D): XRD, SEM, TEM and HRTEM images of VC@NCNT after the stability test of *i-t* curve for 100 h at pH 14.

Fig. S9. (A) Hydrogen production efficiency for HER under potentiostatic electrolysis with VC@NCNT at the overpotential η =310 mV at pH 0; (B) LSV curves obtained with VC@NCNT.

Fig. S10. (A) Polarization curves of bare GCE, VC, Co-NRCNTs, 20% Pt/C, VC@NCNT in phosphate buffer solution; (B) I-t curve obtained for HER with VC@NCNT at the overpotential η = 266 mV at pH 7.

Fig. S11. SEM, TEM, HRTEM images of samples: (A-C): VC@NCNT (Ni); (D-F):VC@NCNT (Fe).

Catalyst	Electrolyte	Current density (j)	Overpotential at the corresponding j (mV)	Stability test	Reference	
VC@NCNT	1 М КОН	10 mA/cm ²	159	100 h		
	0.5 M H ₂ SO ₄	10 mA/cm ²	161	100 h	This work	
	1 M phosphate buffer solution	10 mA/cm ²	266	100 h		
WC-CNTs	1 M KOH	10 mA/cm^2	235	1000 cycles	ACS Nano 2015, 9, 5125.	
	$0.5 \mathrm{MH}_2 \mathrm{SO}_4$	10 mA/cm^2	189	1000 cycles		
Mo ₂ C-CNT	$0.5 \mathrm{MH}_2\mathrm{SO}_4$	10 mA/cm^2	179	- 2000 cycles	J. Mater. Chem. A 2015, 3, 5783.	
	1 М КОН	10 mA/cm^2	257			
WC@NPC	0.5 M H ₂ SO ₄	10 mA/cm^2	51	15 h	J. Am. Chem. Soc. 2017, 139, 5285.	
MoC@NC nanoribbon	0.5M H ₂ SO ₄	10 mA/cm ²	~ 170	70 h	ACS Appl. Mater. Interfaces 2018.	
Mo ₂ C QDs/NGCLs	0.5M H ₂ SO ₄	10 mA/cm^2	136	20 h	Chem. Commun. 2016, 52, 12753	
	1 M KOH	10 mA/cm^2	111			

 Table S3 Comparison of representative precious-metal-free HER electrocatalysts.