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S1 Computational details of the DFT
and DFT+NEGF calculations

The DFT calculations in Sec. 2 of the main manuscript
are performed with the pseudo-potential code SIESTA1

and the all-electron code FHI-aims2–4. The computa-
tional details are the same as those used in previous
works5,6. For the gas phase molecule we use the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approxima-
tion (GGA)7,8 of the exchange-correlation functional, as
well as the hybrid functional PBE09. Additionally, the
energy gaps in the density of states (DOS) are also com-
puted with the spin-polarized G0W0@PBE0 approxima-
tion of the many-body perturbation theory implemented
in FHI-aims, and the results are presented in the Sec.
S2. Geometry optimizations for the molecule integrated

into the Au electrodes are carried out with FHI-aims in
a supercell approach and by employing the functional
PBE+vdWsur f 10,11. The molecule and all the Au atoms,
except for those at the boundary and those directly con-
nected to leads in the transport setup, are allowed to relax
until forces are smaller than 0.01 eV/Å.

DFT+NEGF calculations are performed with the
Smeagol code12,13. The geometries are obtained by join-
ing the central part of the scattering region (optimized by
using FHI-AIMS) to the Au electrodes, and all the consid-
ered structures are shown in Fig. 1 of the main manuscript.
The simulation parameters for the DFT+NEGF calcula-
tions correspond to those outlined in Ref. 5. We employ
non-spin-polarized DFT calculations, since the formation
of either the local magnetic moment or the Kondo state is
accounted for subsequently in the DFT+NEGF+NRG solu-
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Figure S1 Highest occupied and lowest unoccupied molecular
orbitals of the PTM radical computed with G0W0@PBE0. The
SOMO and the SUMO are explicitly indicated. The SOMO-
SUMO gap represents the gas phase charging energy U . Inset:
charge isosurface for the SOMO (orange bubble); C atoms are
in yellow, while Cl atoms are in light green.

tions. Results for a set of spinpolarized DFT+NEGF calcu-
lations are shown in Sec. S2.

S2 Spin-polarized DFT and
DFT+NEGF calculations

The energy spectrum for the isolated PTM molecule for
spin-polarized electrons is shown in Fig. S1. The calcula-
tions are performed by using G0W0@PBE0, which usually
gives an accurate description of the energy levels of small
molecules14. It can be seen that all spin-up and spin-down
levels are occupied up to about −8.5 eV. At −7.5 eV there is
an additional spin-up occupied state, the SOMO. The cor-
responding spin-down state is therefore empty, and its en-
ergy is separated by the charging energy U = 4.31 eV from
that of the SOMO. This U value is in quite close agreement
to the values obtained via finite energy difference calcu-
lations given in Sec. 2 of the main manuscript. Within
the present spin-polarized picture, this empty down-spin
state is usually called the singly unoccupied molecular or-
bital (SUMO). For energies above this state the spectrum is
again approximately degenerate for up- and down-spins.

For the molecule adsorbed on the Au substrate we use
DFT within the local spin-density approximation (LSDA)
to compute the density of states (DOS), since G0W0@PBE0
becomes computationally too demanding. However, the
LSDA DOS of the molecule suffers from the well-known
DFT Kohn-Sham (KS) gap error. On the one hand, the
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Figure S2 DOS of the PTM radical on Au for configuration B2
obtained within a) non-spinpolarized LDA, b) spin-polarized LDA,
and c) spin-polarized LDA+SCO, with a correction energy of 1
eV.

KS SOMO-SUMO gap for the gas phase molecule is only
about 0.4 eV, and is therefore significantly smaller than
the G0W0@PBE0 result. This may lead to a drastic over-
estimation of the computed conductance. On the other
hand, the SOMO-SUMO gap for molecules adsorbed on a
metal substrate is known to shrink with respect to that in
the gas phase due to the image charge effect15,16. This
effect is not captured by the KS description of the energy
levels spectrum with local and semi-local functionals17–19.
A fortuitous error cancellation between the gap underesti-
mation and the neglect of image-charge effects may some-
times happen, but this is not generally the case and correc-
tions are therefore needed.

A reliable estimate of the gap for adsorbed molecules
is generally obtained from the gas phase value computed
with G0W0, to which one then adds a classical image-
charge correction17–19. The practical way to adjust the gap
in KS DFT-based electron transport calculations is then to
add a scissor operator (SCO) correction to the KS eigen-
values20–23. In Fig. S2 (b)-(c) the DOS of the adsorbed
molecule obtained without and with applying a scissor op-
erator correction of 1 eV is shown, and compared also to
the non-spinpolarized calculation in Fig. S2(a).

Note that while the SCO correction can move the SOMO
and SUMO peaks to the correct energies, the DOS does
not show any Kondo feature at EF. Furthermore, mag-
netism in these DFT calculations is described by breaking
the symmetry via the unequal occupation of spin up and
spin down states24. This does not correspond to the cor-
rect many-body picture, where the spin symmetry is pre-
served unless there is an external Zeeman field. The use of
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KS-DFT with the SCO in transport is effectively equivalent
to solving the SIAM in Eq. (1) with a static mean-field ap-
proximation5,25. To obtain the correct Kondo physics and
magnetic behavior it is necessary to add many-body cor-
rections to the KS-DFT, for which we use the NRG in Sec.
3.3 of the main manuscript.

S3 Kondo temperature
The Kondo model is defined by the Hamiltonian

HK = Hd +
1
2

J~Sd ∑
k,k′,σ ,σ ′

c†
k,σ~σσσ ′ck′,σ ′ (S1)

where ~Sd = 1
2 ∑σσ ′ d

†
σ~σσσ ′dσ ′ is the spin operator of the

impurity site, the vector ~σ contains the Pauli-matrices
as components, and J is a number representing an ef-
fective exchange coupling. As in Sec. 3.1 of the main
manuscript, ck,σ (c†

k,σ ) and dσ (d†
σ ) are the fermionic an-

nihilation (creation) operators for the bath electrons and
the impurity electrons, respectively. The SIAM in Eq. (1)
maps onto the Kondo model under the following condi-
tions. For a k-independent hybridization matrix element,
Vk = V , a constant DOS of the bath, ρ, and therefore a
constant Γ = 2πV 2ρ, the impurity spin ~Sd is coupled via
J = 2V 2

(
1
εd
− 1

εd+U

)
to the bath26. Note that the strong

correlation limit (U � Γ) for the SIAM corresponds to the
weakly coupled case in the Kondo model Jρ � 1.

A method to approach the so-called Kondo problem
without employing perturbation theory or mean-field de-
coupling techniques was developed in a series of papers
by Anderson and coworkers27–30, which then led to the
renormalization group approach (RG) by Wilson31. In this
method it became apparent that the generation of the low
energy scale signals the renormalization group flow to a
strong-coupling fixed point and a formation of a singlet
state for temperatures θ � θL, where

θL =
1
2

√
ΓUe−

1
Jρ . (S2)

We can replace J and ρ by ε and Γ to obtain the equivalent
equation (Ref. 32, page 168)

θL =
1
2

√
ΓUe

πεd(εd+U)
UΓ . (S3)

Since θL is defined by χs(θ = 0) = (gµB)
2/4kBθL, it can

be determined from the low-temperature limit of the mag-
netic susceptibility (see also page 155 in Ref. 32). For
the half-filling case, where εd =−U/2, the temperature θL
agrees with Wilson’s numerical result up to a constant (the
Wilson number)33

cW =
θW

θL
= 0.41072. (S4)

Here θW denotes the Kondo temperature deduced from the
renormalization group calculations by Krishna-murthy et
al. 34, which is equal to θL up to the scaling factor cW.

S4 Computational details of the NRG
calculations

The numerical renormalization group (NRG) method is a
very powerful tool for the solution of effective impurity
models34–39. The NRG is a non-perturbative approach and
allows to access arbitrarily small energy scales, which is
essential for the description of systems with characteristic
temperatures of the order of 10K and below. NRG has been
extended to handle arbitrary hybridization functions as in-
put and allows one to produce dynamical quantities such
as the impurity self-energy40. In the present article we
apply the recent methodological developments by Žitko41

in computing dynamical quantities, and we employ the z-
averaging technique proposed by Oliveira and Oliveira42.
Technical details for the application of the NRG to the An-
derson model have been described in Ref. 37.

Here we only give a brief overview of the key steps to
setup the NRG procedure. First, we divide the energy
range of the bath spectral function into a set of logarith-
mic intervals, hence reducing the continuous spectrum to
a discrete set of states (logarithmic discretization). The
discretized version of the model Hamiltonian is mapped
onto a one-dimensional system consisting of a semi-infinite
chain of sites. The magnetic impurity, which is left un-
changed by the unitary transformation, constitutes the first
site in the semi-infinite chain. Only the coupling to the
bath degrees of freedoms and the bath-geometry are mod-
ified. An iterative diagonalization of the impurity site, cou-
pled to its adjacent bath site, is performed, where high
energy levels are truncated. The truncation error can be
controlled as long as the Hamiltonian parameters, like the
on-site energies and couplings of adjacent sites along the
chain, are well separated in energy. The separation of en-
ergy scales is guaranteed by the logarithmic discretization.
The iterative diagonalization together with the rescaling
of energies is understood as a mapping of the initial im-
purity site to an effective impurity site coupled to a bath
with one bath site removed (the RG-step). Static thermo-
dynamic and dynamic quantities can both be calculated
from the knowledge of the energy spectrum and the eigen-
states of the system. Care has to be taken, however, when
one tries to analyze dynamical quantities, since the energy
resolution is affected to some extend by the logarithmic
discretization41,43.

When temperature dependent quantities are computed
in NRG, they are usually affected by truncation errors,
since only a finite number of energy eigenvalues can be
kept at each RG iteration. However, for thermodynamic
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Figure S3 Dynamical spin susceptibility χs(E,θ = 0) for different
interaction strengths, calculated for hybridization function pre-
sented in Fig. 4 of the main manuscript, for configuration B4
(see Fig. 1 of the main manuscript), and θ = 0K. Inset: impurity
density of states AAI(E). The calculation is performed close to
the half-filled case.

quantities such as the impurity entropy, the specific heat
and the susceptibility, one can show that the statistical
weight of the truncated states is suppressed by the Boltz-
mann factor31,34,37,42. We therefore use this scheme in or-
der to compute the temperature dependence of the static
susceptibility in Fig. 5 of the main manuscript. For dynam-
ical quantities, such as the impurity spectral function, the
situation is more complicated, since here the information
of all energy scales enters. More elaborate schemes need
to be employed in this case (see for example Ref. 37 and
references therein).

We introduce an energy cutoff for the hybridiza-
tion function. The left and right energy cutoffs are
[−1.20,0.91]eV, [−1.33,0.30]eV, and [−0.35,0.80]eV for the
B2, B4, and T4 configurations, respectively. From the trun-
cated imaginary part we compute the real part by perform-
ing a Hilbert transformation. This procedure ensures that
the analytic properties of ∆(ω) are not modified due to the
discretization and truncation. For large U it can be ex-
pected that the bandwidth of the conduction electrons is
irrelevant for the low frequency behavior. The discretiza-
tion scheme proposed in Ref. 44 is used, which corrects
the systematic error in the first energy interval. The dis-
cretization parameter Λ = 2 is applied, and 5000 states are
kept at each RG step.

S5 Impurity susceptibility
Here we derive the impurity contribution to the isothermal
magnetic susceptibility, which is needed for accessing θW.
It is closely related to the Matsubara susceptibility χs

n(β ),

which is defined as (paramagnetic case):

χ
s
n(β ) =

∫
β

0
dτeiωnτ〈Tτ Sz

AI(τ)S
z
AI(0)〉. (S5)

Here Sz
AI(τ) is the spin operator on the impurity site

Sz
AI =

1
2 (d

†
↑d↑− d†

↓d↓) in the Heisenberg representation for
imaginary times τ. We define the inverse temperature
β = 1/kBθ , and denote with Tτ the time ordering opera-
tor, which moves the earlier times to the right. The brack-
ets 〈O〉 on an operator O denote the thermodynamic aver-

age 〈O〉= Tr
[
e−β (H−µN−Ω)O

]
, with e−βΩ = Tr

[
e−β (H−µN)

]
,

where Ω is the grand canonical potential, µ is the chemical
potential, and N is the particle number operator. We do not
distinguish the Fermi energy EF from the chemical poten-
tial µ in this article, and hence both are employed. The use
of EF is commonly used in the context of the first principles
DFT-based calculations, while the chemical potential is fa-
vored in the context of statistical physics. The Matsubara
frequencies are the complex energies iωn = i2nπ/β , where
n = 0,1,2, . . . . The index n in Eq. S5 corresponds to the n-th
Matsubara frequency. The isothermal magnetic susceptibil-
ity is given by the Matsubara susceptibility at the first Mat-
subara point χs

n=0(β ). In the following we show how we
calculate the isothermal magnetic susceptibility for finite
temperatures. The total spin, projected on the z-direction,
commutes with the Hamiltonian (〈Sz

tot(τ)S
z
tot(0)〉= 〈(Sz

tot)
2〉)

so that we find:

χ
tot
n (β ) =

∫
β

0
dτeiωnτ〈Tτ Sz

tot(τ)S
z
tot(0)〉 (S6)

χ
tot
n=0(β ) =

∫
β

0
dτ〈Tτ Sz

tot(τ)S
z
tot(0)〉 (S7)

= β 〈(Sz
tot)

2〉, (S8)

where Sz
tot =

1
2 (d

†
↑d↑−d†

↓d↓)+
1
2 ∑k(c

†
k,↑dk,↑−d†

k,↓dk,↓). From
Eq. (S8) one subtracts the susceptibility of a reference sys-
tem, i.e. of the system without impurity χ

(0),tot
n=0 (β ). This

gives Wilson’s definition of the impurity contribution to the
susceptibility31,37:

χs(β )≡ χ
s
n=0(β ) = χ

tot
n=0(β )−χ

(0),tot
n=0 (β ). (S9)

The latter is used to determine the Kondo scaling.
The dynamical spin susceptibility is defined as45:

χs(E,β ) = i
∫ 0

−∞

dteiEt〈[Sz
AI(t),S

z
AI(0)]〉, (S10)

where Sz
AI(t) is spin operator on the impurity site, Sz

AI =
1
2 (d

†
↑d↑− d†

↓d↓), in the Heisenberg representation for real
times t. The susceptibilities in Eq. S10 and Eq. S5
are related by analytic continuation iωn → E + iη . In
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Fig. S3 we show the imaginary part of χs(E,θ = 0) at
zero temperature, and the inset shows the density of
states AAI(E) =− 1

π
ImGdσ ,dσ (E) of the impurity site, where

Gdσ ,dσ (E) =−i
∫ 0
−∞

dteiEt〈[dσ (t),d
†
σ (0)]〉 is the one-electron

Green’s function on the impurity site. A clear three-peak
structure is found which is characteristic for the SIAM. In
particular, the low-energy physics is described by a Kondo
resonance in the DOS around E = EF = 0, which is grad-
ually suppressed upon increasing U (not shown). The
atomic levels, broadened by the coupling to the conduct-
ing electrons, are located at εd ±U/2. The energy axis of
Imχs(E,θ = 0) is scaled by θW, which is determined from
the impurity contribution to the isothermal magnetic sus-
ceptibility χs(0,θ = 0) defined above. One can clearly see
that the Imχs(E,θ = 0) reaches a minimum (maximum)
around (E−EF)/θW ≈ 1 (around (E−EF)/θW ≈ −1). The
vertical axis is scaled by the maximum value of Imχs(E,θ =
0), denoted by Imχs(Emax,θ = 0), as given in the table in
Fig. S3.

S6 Full width at half maximum of the
Kondo peak

For a non-spinpolarized system the temperature dependent
spin-resolved spectral function AAI =A↑AI =A↓AI of the SIAM
is given by

AAI(E,θ) =

1
π

∆− Im(Σ(E,θ))

[E− εd−Re(Σ(E,θ))]2 +[∆− Im(Σ(E,θ))]2
,

(S11)

with ∆ = Γ/2 and εd defined in the main text. The
normalization of AAI(E,θ) is chosen in such a way that∫

∞

−∞
AAI(E,θ)dE = 1, so that it is equal to the density

of states. Here ∆ is assumed to be energy-independent,
and we will discuss the implication of this approxima-
tion in the following. The low-energy behavior of AAI
is then determined by the low energy expansion of the
many-body SIAM self-energy Σ(E,θ). In the half-filled,
strong correlation (∆�U) case considered here we have
εd +Re(Σ(0,0)) = 0, so that AAI is particle-hole symmetric
for a constant ∆. In this case, the zero voltage low energy
expansion of Σ(E,θ) for real energies E is given by47–49

Σ(E,θ)≈−εd +(1− z−1)E− i
∆

2

(
E2

∆̃2
+

π2k2
Bθ 2

∆̃2

)
, (S12)

with ∆̃= z∆= zΓ/2, and z= (1− ∂Re(Σ(E))
∂E |E=0)

−1, evaluated
at zero temperature47,48. We now insert Eq. (S12) into
Eq. (S11), and find that AAI is maximal at E = 0, with the

0 1 2 3
θ/θ

L

0

0.1

0.2

0.3

0.4

0.5

W
 /

 ∆

NRG
Eq. (S14)

U/π∆ = 4; z = 0.0245

Figure S4 Comparison of the results for the full width at half
maximum, W , of the Kondo peak as function of temperature, ob-
tained by NRG and by the approximated relation in Eq. (S14)
respectively. The NRG results are extracted from Fig. 6 of Ref.
49. The parameters used in the NRG calculations are U/π∆ = 4,
and a constant DOS of the electrodes as function of energy is
assumed.

height of the peak given by

AAI(0,θ) =
1

π∆

1

1+
π2k2

Bθ 2

2∆̃2

. (S13)

The full width at half maximum, W , is determined by solv-
ing the condition AAI(W/2,θ) = AAI(0,θ)/2 for W . Using
Eqs. (S11-S13) one then obtains

W (θ , ∆̃) = ∆̃2
√

2

√√√√√
1+
(

π2k2
Bθ 2

2∆̃2
+1
)2

−1. (S14)

At zero temperature this FWHM is

W (0, ∆̃) = ∆̃2
√

2
√√

2−1. (S15)

To estimate the validity of our approximation in Eq.
(S14) for W (θ , ∆̃), in Fig. S4 we compare it to the exact
results obtained from NRG calculations in Ref. 49. The
agreement is very good up to about θ ≈ 2θL, above which
the NRG FWHM rises faster. This is mainly due to the fact
that in our approximation we assume that there is only
the Kondo peak, while in the full spectral function also the
two side-peaks at ±U/2 contribute to the spectral func-
tion around E ≈ 0. This contribution increases relative to
the height of the Kondo peak as the temperature increases
well above θL.

We can now apply Eq. (S14) for the FWHM to our Au-
PTM system. We first fit Σ(E,0) calculated using the NRG
to the expansion in Eq. (S12) by adjusting the free parame-
ters in that equation, namely z and ∆ at zero temperature.
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Configuration zΣ ∆Σ (meV) ∆̃Σ (meV) WΣ (meV) WRef (meV) ∆ = Γ

2 (meV ) WT (meV)
B2 0.00315 67 0.210 0.381 0.599 57 0.381
B4 0.00326 67 0.215 0.395 0.612 59 0.408
T4 0.00598 75 0.449 0.816 1.265 63 0.830

Table S1 Values of zΣ and ∆Σ extracted from the low-energy many-body self-energy (Eq. (S12)), and resulting FWHM WΣ at zero
temperature using Eq. (S15), are compared to the values for ∆ = Γ/2 obtained directly from the DFT calculations (see Fig. 1 of
the main manuscript) and of the FWHM obtained from the width of the Kondo peak in the transmission coefficients, WT. We also
present the value obtained from ∆̃Σ using the relation given in Ref. 46, denoted as WRef.

We denote these fitted values as zΣ and ∆Σ (∆̃Σ = zΣ ∆Σ),
and the zero temperature FWHM calculated with these val-
ues in Eq. (S15) as WΣ. The resulting values are given
in Table S1, where we also compare them with ∆ = Γ/2
extracted from the DFT calculations (see Fig. 1 of the
main manuscript), and to the FWHM evaluated directly
from the width of the transmission peaks in Fig. 6 of the
main manuscript, which we denote as WT. One can see
that ∆Σ and ∆ are in rather good agreement, confirming
the validity of the expansion in Eq. (S12) for our system.
Since the hybridization function of the Au-PTM system is
energy dependent, we can interpret the fitted values ∆Σ

as effective average hybridization strengths. In the same
way zΣ corresponds to an effective average wave-function
renormalization factor, and ∆̃Σ to an effective renormal-
ized hybridization. These therefore correspond to the ef-
fective NRG results for z and ∆̃, and we report them in
Table 1 of the main manuscript. Importantly, WΣ and WT
are also in good agreement, confirming the validity of the
relations presented in this appendix. We note that in Ref.
50 the zero temperature FWHM is given by a different rela-
tion, which we denote as WRef, namely WRef = 2∆̃

√
2. Using

our fitted values of ∆̃Σ we also evaluate WRef for all con-
figurations, and the values are reported in Table S1. One
can see that WRef systematically overestimates the FWHM
when compared to the correct value WT. This is in contrast
to WΣ, which agrees well with WT, showing that our expan-
sion in Eq. (S14) provides a more accurate approximation
of the Kondo peak width.

S7 Transmission, current and con-
ductance

In the case of the SIAM, the total current can be written
as5

I = 2
e
h

∫
dE ( fL(E)− fR(E))Tt(E), (S16)

where fL(R)(E) = f (E − µL(R)) is the Fermi function of
the left (right) electrode with chemical potential µL(R),

Tt(E) = T ↑t (E) = T ↓t (E) is the spin-resolved total effective
transmission, and the factor 2 takes into account the spin-
degeneracy. The applied bias voltage, V , is equal to V =

(µL−µR)/e, and Tt(E) is given by

Tt(E) = TB(E)+TAI(E)+TI(E)+TR,AI(E), (S17)

and includes elastic and incoherent transmission through
the impurity, TI(E) and TR,AI(E), as well as the background
transmission TB(E) and the interference term TI(E). The
total elastic transmission is T (E) = TAI(E)+TB(E)+TI(E).
The effective total transmission Tt,AI(E) through the impu-
rity can be written as51

Tt,AI(E) = TAI(E)+TR,AI(E)

= 2π
ΓL(E)ΓR(E)

ΓL(E)+ΓR(E)
AAI(E). (S18)

Here it is assumed that ΓL(E)= λ ΓR(E), with λ a constant.
In Figs. S5-S7 we present T (E) and Tt(E) for different val-
ues of U . The configurations correspond to the ones de-
scribed in the main text, namely B2, B4, and T4 (see Fig.
6 of the main manuscript). Note that these are all results
for θ = 0, so that T (EF) = Tt(EF), and moreover the Kondo
peak width becomes vanishingly small as U becomes large.

We can split the total current according to the different
contributions in the transmission as

I = IAI + IB + II, (S19)

where

IAI =
2e
h

∫
dE ( fL(E)− fR(E))Tt,AI(E), (S20)

II = 2
e
h

∫
dE ( fL(E)− fR(E))TI(E), (S21)

IB = 2
e
h

∫
dE ( fL(E)− fR(E))TB(E). (S22)

Note that the transmission coefficients in this set of equa-
tions depend also on µL and µR. In an analogous way we
then split the total conductance in its individual contribu-
tions

G = GAI +GB +GI, (S23)

with GAI = dIAI/dV , GI = dII/dV , and GB = dIB/dV .
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Figure S5 Transmission including the NRG self-energy for the
B2 structure, for four different values of U .
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Figure S6 Transmission including the NRG self-energy for the
B4 structure, for four different values of U .
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Figure S7 Transmission including the NRG self-energy for the
T4 structure, for four different values of U .

S8 Conductance of the Kondo reso-
nance

S8.1 Low voltage and temperature expan-
sion

For a finite applied bias voltage the low energy expansion
of the many-body self-energy contains additional voltage
dependent terms when compared to Eq. (S12), as dis-
cussed in Ref. 48. However, if one considers the highly
asymmetric case, where ΓL� ΓR or ΓR� ΓL, these terms
vanish. The SIAM spectral function is then independent of
the voltage, except for a rigid shift along the energy axis,
which is set by the choice of the arbitrary constant poten-
tial shift that can be applied to the whole system. The
physical origin of this behaviour can be explained as fol-
lows: if either one of ΓL or ΓR is very small, then the cur-
rent through the system is also small, so that the change in
the shape of the spectral function with applied voltage is
negligible. Without loss of generality we then set the rigid
shift of the spectral function to be 0, which is obtained by
setting µL = EF and µR = EF− eV when ΓL � ΓR, and by
setting µL = EF + eV and µR = EF when ΓR � ΓL. In the
following we only consider the case ΓL � ΓR, the equa-
tions for ΓR � ΓL can be obtained in an analogous way.
With this system setup, and with EF set to 0, for ΓL� ΓR
the conductance of the AI as function of the applied bias,
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GAI(V,θ) = dIAI/dV , results from Eq. (S20) to

GAI(V,θ)≈−
2e2

h

∫
Tt,AI(E− eV,θ)

d f (E)
dE

. (S24)

At zero temperature GAI(V,θ = 0) ≈ (2e2/h)Tt,AI(−eV,θ =
0). At finite low temperatures we can perform a Sommer-
feld expansion of the energy integral involved in the calcu-
lation of the current, and to second order in θ the conduc-
tance then becomes

GAI(V,θ) ≈ 2e2

h
[Tt,AI(−eV,θ)+

π2

6
∂ 2Tt,AI(E,θ)

∂E2

∣∣∣∣
E=−eV

k2
Bθ

2
]
. (S25)

Using Eq. (S18) the temperature dependent Tt,AI(E,θ)
can be rewritten as Tt,AI(E,θ) = 2π[ΓLΓR/(ΓL +
ΓR)]AAI(E,θ). With Eqs. (S11) and (S12) we can
then expand Tt,AI(E =−eV,θ) to lowest order in powers of
V and θ , and obtain

Tt,AI(E =−eV,θ) ≈ ΓLΓR

ΓL +ΓR

2
∆

[
1− 3

2
e2V 2

∆̃2
−

π2

2
k2

Bθ 2

∆̃2

]
, (S26)

and

π2

6
∂ 2Tt,AI(E,θ)

∂E2

∣∣∣∣
E=−eV

k2
Bθ

2 ≈ ΓLΓR

ΓL +ΓR

2
∆[

−π2

2
k2

Bθ 2

∆̃2

]
,(S27)

If we insert these last two equations into Eq. (S25) we ob-
tain

G0 = GAI(0,0) =
2e2

h
4ΓLΓR

(ΓL +ΓR)
2 , (S28)

and

GAI(V,θ)−G0

G0
≈ −3

2
e2V 2

∆̃2
−π

2 k2
Bθ 2

∆̃2
, (S29)

and from this relation we can directly extract the lowest or-
der expansion coefficients of the conductance (see Eq. (14)
of the main manuscript) as

cV =
3
2
, (S30)

cθ = π
2. (S31)

These results are valid in the strong correlation limit (U�
Γ) and at particle-hole symmetry, and agree with the gen-
eral values obtained in Ref. 48,52 and in Sec. S9 for this
case. We note that the full energy dependent transmission
contains more information than this lowest order expan-
sion, which is valid only in the low voltage region.

S8.2 Approximations for large temperatures
As voltages or temperatures get large, the second order
expansion discussed so far will eventually deviate signif-
icantly from the correct result, and we now estimate the
magnitude of the voltages and temperatures at which this
happens.

By comparing the exact NRG results for Σ(E,0) to the
second order expansion (Eq. (S12)) we find that the terms
describing the energy dependence are approximately valid
for energies also beyond ∆̃, so that they are rather well
suited to describe the shape of the Kondo peak at zero tem-
perature. This is also reflected in the fact that the second
order expansion of the FWHM of the Kondo Peak agrees
well with the exact NRG results (see Fig. S4).

To separately verify the range of validity of the second
order expansion in temperature of the self-energy we eval-
uate AAI(0,θ) (Eq. (S11)) for increasing temperatures
using the second order expansion of Σ(0,θ) given in Eq.
(S12), and then compare it to the exact NRG results of Ref.
49. This comparison is presented in Fig. S8(a), where we
plot the normalized spectral function AAI(0,θ)/AAI(0,0) as
function of temperature, and the green dash-dotted curve
is the result of the second order expansion, while the large
blue dots are the exact NRG data. It can be seen that the
results agree well for low θ , and that even at higher θ they
qualitative behaviour of a decaying height of the Kondo
peak is captured by the second order expansion. On a
quantitative level however the results start to deviate sig-
nificantly already at temperatures of about 0.5 θL, with the
second order expansion results overestimating the decay.

In analogy of the second order expansion of the conduc-
tance presented in the previous subsection (Eq. S29) we
now also expand AAI(0,θ) to second order in θ . Using Eqs.
(S11) and (S12) we obtain

AAI(E = 0,θ) =
1

π∆

[
1− 1

2
π

2 k2
Bθ 2

∆̃2
+O

(
kBθ 4

∆̃4

)]
, (S32)

with the second order coefficient π2/2 equal to half the
size of the second order temperature expansion coefficient
for the conductance, cT , given in Eq. (S31). The larger
size of cT is due to the fact that additionally to the change
in AAI(E = 0,θ) it also captures the temperature induced
broadening of the Fermi distribution. Overall we can then
expect that the range of validity in terms of magnitude of
temperature is similar for AAI(E = 0,θ) and for the 0 bias
conductance G(V = 0,θ).

We can equivalently express the expansion of AAI(E =
0,θ) directly in terms of kBθL = π

4 ∆̃ [Eq. (8) of the main
manuscript] as

AAI(E = 0,θ) =
1

π∆

[
1− 1

2

(
π

2

)4 θ 2

θ 2
L
+O

(
θ 4

θ 4
L

)]
. (S33)
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Figure S8 Temperature dependent normalized density of states,
equivalent to the spectral function, as function of temperature;
the NRG results (blue filled circles) are extracted from Fig. 6 in
Ref. 49. The green dash-dotted lines correspond to the relation
given in Eq. (S13), the red dashed curve in indicates the exact
second order low temperature expansion in Eq. (S33), and the
black curve show the DOS fitted to the NRG results using Eq.
(S35).

The results are plotted as red dashed curve in Fig. S8. It
can be seen that this expansion starts to significantly devi-
ate from the exact NRG results already at about θ ≈ 0.2θL.
Since we expect a similar upper limit of the validity for
temperature dependent zero-bias conductance, it shows
that to reliably compare experiment to the second or-
der expansion in Eqs. (14) of the main manuscript, or
(S29), accurate measurements are needed for tempera-
tures smaller than about 0.2 θL.

In practice it is difficult to accurately measure the con-
ductance below 0.2 θL, and indeed most experiments mea-
sure up to temperatures significantly larger than θL. There-
fore, based on the exact NRG results in49 a fitting function
for the temperature dependent low bias conductance has
been proposed in Ref. 53, which has then been found to
match well the experimental conductance drop with tem-
perature. The form of this fitting function is

G(V = 0,θ) = G0

[
1+a

θ 2

θ 2
L

]−s

+GB, (S34)

with GB equal to the background conductance, G0 =G(V =
0,θ = 0)−GB, and with a determined by the imposed con-
dition that G(0,θL,1/2)=1/2. Note that θL,1/2 is similar but
not identical to θL. For large U/Γ, as is the case for the Au-
PTM system, the value is given as 1.2 θL in Ref. 49 and as
1.041 θL in Ref. 54. If we neglect this small difference and
assume θL,1/2 ≈ θL, then we obtain a = 21/s− 1. We then
determine the value of s from the condition that the sec-
ond order expansion in θ of Eq. (S34) has to correspond

0 2 4 6 8 10
U/(π∆)

0

0.5

1

u
~

z

Figure S9 The Bethe ansatz results for the wave function renor-
malization factor, z, and the rescaled interaction ũ, as defined in
Sec. 5 of the main manuscript. Note that the strong coupling
fixed point value ũ = 1 is already reached for U/(π∆)≈ 2.

to the exact result in Eq. (S29), which gives the relation
s
(
21/s−1

)
=(π/2)4. This can be solved numerically to give

s≈ 0.20.
In order to obtain an empirical equation for the temper-

ature dependence of the self-energy we now use an anal-
ogous approach to fit NRG results of AAI(E = 0,θ) for the
whole temperature range shown in Fig. S8(a). Based on
the empirical fitting Eq. (S34) for the conductance we use
a similar functional form to fit AAI(0,θ) to the NRG results:

AAI(E = 0,θ) =
1

π∆

[
1+a

θ 2

θ 2
L
+

(
a

θ 2

θ 2
L

)2
]−s/2

, (S35)

where a and s have the same values as used in Eq. (S34).
The resulting function is shown as black curve in Fig.
S8(a), and it can be seen that it approximates well the
exact NRG results. It is also straight forward to verify that
this fitting function has the correct second order expansion
given in Eq. (S33).

S9 Expansion coefficients of the
rSPT conductance

In this section, we provide full expressions for all transport
coefficients, defined in Eq. (14) of the main manuscript.
The results are based on the extended version of the rSPT,
introduced in reference55 but have not been presented pre-
viously. As a result, the transport coefficients below are
correct to higher order in the deviation from the symmetric
Anderson model than those in48. As discussed in section 5
of the main manuscript, the central object of the method is
the wavefunction renormalization factor z. For a constant
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hybridization function, it can be obtained exactly via the
Bethe ansatz48. Fig. S9 shows z and ũ obtained from the
Bethe ansatz as a function of the bare Coulomb interaction
U , measured in units of π∆.

For an energy-dependent hybridization function, the
NRG can be used to obtain z through z = (1 −
∂ΣR

σ (ω)|ω=0)
−1 as discussed in the main part. Alternatively,

z can also be determined perturbatively through

z = 1+
Ũ2

2

∫ +∞

−∞

dω

2πi

[
Π̃

(0)A(−ω)
∂

∂ω
g̃(0)K(ω)

+ Π̃
(0)K(−ω)

∂

∂ω
g̃(0)R(ω)

]
+O

(
Ũ3), (S36)

here Ũ = z2Γ↑↓(0,0,0,0), where Γ↑↓(0,0,0,0) is the two-
particle vertex of the reference system at ω = 0,θ = 0,V =
0. Then, at the order of approximation used in the underly-
ing expansion, it turns out that Γ↑↓(0,0,0,0) = U +O(U3),
and hence up to second order one has Ũ ∼ z2U +O(U3);
g̃(0)x is the renormalized Green function, and Π̃(0)x refers to
the renormalized polarization bubble of the reference sys-
tem, i.e., where 2εd +U = 0, indicated by the superscript
(0) and x=K,A,R denotes the Keldysh, advanced, retarded

component respectively. All terms in Eq. (S36) have to be
evaluated in the zero-temperature (θ = 0) limit. In the case
of a constant hybridization function, this equation reduces
to

2
(
3− π2

4
)( U

π∆

)2 z =

√
1+4

( U
π∆

)2(3− π2

4
)
−1. (S37)

For small U we can therefore use this equation to estimate
z, while for large U we use the z obtained either from NRG
or from the Bethe ansatz, as outlined in the main text.

Equipped with z for the particle-hole symmetric SIAM
on the Keldysh contour, the method of references48,55

yields an approximative expression for the renormalized
Green function Gx (x = K,A,R) of the asymmetric SIAM
with energy-dependent hybridization function near the
strong-coupling fixed point. Then the imaginary part
of GR can be used to extract the spectral function and
calculate the current according to Eqs. S16 and S18. From
the resulting conductance G(V,θ ,B) = dI/dV , expressions
for the expansion coefficients in Eq. (14) of the main
manuscript can be constructed. These are obtained as

cB =

(
1−3δ 2

)(
1+ ũ

1+ε̃2
d

)2

+ 2δ ũε̃d(1+δ 2)

(1+ε̃2
d )

2

4(1+δ 2)2 , (S38)

cV =

2
(
3δ 2−1

)
(ζ −1)−

(
δ 4−1

)
(2ζ +1)ũ2 +

4δ(δ 2+1)ζ ũε̃d

(ε̃2
d+1)

2

2(δ 2 +1)2 , (S39)

cV Ed =
2(1−κ)δ

(κ +1)(δ 2 +1)
, (S40)

cθV =
π2

6(δ 2 +1)4

{(
−12

(
5δ

4−10δ
2 +1

)
(ζ −1)+

(
δ

2 +1
)

ũ2

(
−3δ

6
ζ +3δ

4

(
ζ

(
4ε̃2

d(
ε̃2

d +1
)4 −7

)
+9

)

+ δ
2

(
ζ

(
8ε̃2

d(
ε̃2

d +1
)4 +111

)
−162

)
+ζ

(
−

4ε̃2
d(

ε̃2
d +1

)4 −15

)
+27

)
−

24δ
(
δ 4−1

)
ũε̃d(

ε̃2
d +1

)2

)}
, (S41)

cθV Ed =
2π2(κ−1)

(
−3δ 5ũ2

(
ε̃2

d +1
)2

+6δ 3
(
ũ2−1

)(
ε̃2

d +1
)2

+3δ
(
3ũ2 +2

)(
ε̃2

d +1
)2

+3δ 4ũε̃d +2δ 2ũε̃d− ũε̃d

)
3(κ +1)(δ 2 +1)3 (

ε̃2
d +1

)2 , (S42)
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δ (ε̃d) = ε̃d− ũArctan ε̃d , (S43)

together with the parameters

κ =
ΓL

ΓR
,

ζ =
3κ

(1+κ)2 . (S44)

Finally, for cθ we obtain

cθ =
π2

3

1+2ũ2(1− δ̃ 2)+ 2ũδ̃ 2

(1+ε̃2
d )

2 − 4δ̃ 2

1+δ̃ 2

1+ δ̃ 2
, (S45)

where the quantity δ̃ appearing in this expression is given
by

δ̃ = δ̃ (ε̃d , ũ) = ε̃d−
ũ

1+ ũ
Arctan ε̃d . (S46)

We note that for particle-hole symmetry (ε̃d = 0), strong
coupling (ũ ≈ 1) and ΓL � ΓR (κ ≈ 0), we recover the
results of Eqs. (S30) and (S31), namely cθ = π2 and
cV = 3/2. Note also that an expansion of the coefficients to
lowest order in (1−κ), which corresponds to an expansion
around the symmetric coupling case (ΓL = ΓR), shows that
in this case the 0th order term is non-zero only in cV and
cθV , the first order term is non-zero only in cV Ed and cθV Ed ,
and the second order term is again non-zero only in cV and
cθV . This odd-even behaviour in the expansions is a con-
sequence of the more general relation G(θ ,V ) = G(θ ,−V )
valid for κ = 1, and which combined with Eq. (14) of the
main manuscript requires that cV and cθV can only have
even powers of (1−κ), while cV Ed and cθV Ed can only have
odd powers of (1−κ).
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