Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

High-performance broadband heterojunction photodetectors based on multilayered PtSe₂ directly grown on Si substrate

Chao Xie,^{a,c} Longhui Zeng,^b Zhixiang Zhang,^a Yuen-Hong Tsang,^b Linbao Luo^a and Jung-Ho Lee^{*c}

^a School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, China

^b Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,

China

^c Departments of Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea

* Email: jungho@hanyang.ac.kr

Figure S1. Photographs of bare Si and PtSe₂/Si substrates.

Figure S2. (a) The statistical distribution of the ratio of the intensity of the two distinct peaks extracted from Raman spectra of $PtSe_2$ sample. (b) The statistical distribution of interlayer spacing of crystalline domains with (001) plane of $PtSe_2$ films.

Figure S3. (a) *I-V* characteristics of Au-PtSe₂-Au and In/Ga-Si-In/Si heterostructures, indicating good Ohmic contact between Au and PtSe₂ and In/Ga and Si, respectively. (b) Time-dependent photoresponse of PtSe₂/Si heterojunction photodetector during operation for over a thousand cycles.

Figure S4. *I-V* curves of PtSe₂/Si heterojunction photodetectors with PtSe₂ thicknesses of (a) ~2.5 nm, ~5 nm, (b) ~7.5 nm, 10.5 nm and 14.5 nm, in dark and under 808-nm NIR illumination (87.6 μ Wcm⁻²), respectively.

Figure S5. (a) *I-V* curves of heterojunction device under 808-nm illumination with light intensities of (a) 0.71 μ Wcm⁻²-0.267 mWcm⁻² and (b) 0.362 mWcm⁻²-13.93 mWcm⁻². (c) Time-dependent photoresponse of device under 1310-nm illumination (intensity: 5.50 mWcm⁻²).