Supporting Information

Hetero-biicosahedral [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]⁺ nanocluster: selective synthesis and optical and electrochemical properties

Lakshmi V. Nair,^{‡a} Sakiat Hossain,^{‡a} Shunjiro Takagi,^a Yukari Imai,^a Guoxiang Hu,^b Shota Wakayama,^a Bharat Kumar,^a Wataru Kurashige,^{a,c} De-en Jiang,^{*b} and Yuichi Negishi^{*a,c}

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo, 162–8601, Japan.

^bDepartment of Chemistry, University of California, Riverside, CA, 92521, USA.

^cPhotocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278–8510, Japan.

These authors contributed equally and are joint first authors

Corresponding Author E-mail: negishi@rs.kagu.tus.ac.jp (Y. Negishi); djiang@ucr.edu (D.-e. Jiang)

1. Additional Information for Experiments

Parameters used in mass spectrometry measurements.

Specialized parameters for the 1+ *region*: End plate offset: -500 V, Capillary: -4500 V, Nebulizer: 1.0 Bar, Dry gas: 2.0 L/min, Dry temperature: 100°C, Capillary exit: 100.0 V, Hexapole 1: 20.0 V, Hexapole 2: 14.0 V, Transfer time: 98.0 µs, Lens 1 storage: 40.0 V, Lens 2: 7.0 V, Lens 4: 0.6 V, Detector: 0 V, Skimmer 1: 40.0 V, Skimmer 2: 20.0 V, Hexapole RF: 800.0 Vpp, Pre pulse storage: 25.0 µs, Lens 1 extraction: 20.3 V, Lens 3: -20.3 V, Lens 5: -29.6 V.

Specialized parameters for the 2+ region: End plate offset: -500 V, Capillary: -4500 V, Nebulizer: 2.5 Bar, Dry gas: 2.0 L/min, Dry temperature: 100°C, Capillary exit: 100.0 V, Hexapole 1: 20.0 V, Hexapole 2: 18.0 V, Transfer time: 80.0 µs, Lens 1 storage: 40.0 V, Lens 2: 7.0 V, Lens 4: 0.6 V, detector: 0 V, Skimmer 1: 40.0 V, Skimmer 2: 20.0 V, Hexapole RF: 800.0 Vpp, Pre pulse storage: 25.0 µs, Lens 1 extraction: 20.3 V, Lens 3: -20.3 V, Lens 5: -29.6 V.

2. Additional Tables

Position	Au ₂₄	Pd-I	Au ₂₄ Pd-II	
	Au	Pd	Au	Pd
Site 1 ^a	50.9%	49.1%	51.0%	49.0%
Site 2 ª	50.7%	49.3%	49.3%	50.7%

Table S1. Occupancy of Pd in [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl (Au₂₄Pd-I and Au₂₄Pd-II).

^a see Figure 3(a).

Table S2. Au–P, Au–S, and Au–Cl Bond Lengths in [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl (Au₂₄Pd-I and Au₂₄Pd-II) and [Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂].

Bond Type ^a	Au ₂₄ Pd-I (Å)	Au ₂₄ Pd–II (Å)	Au ₂₅ (Å)
Au18, 41, 23-P9, 17, 191	2.285	2.284	2.291
Au38, 45, 19–P14, 18, 153	2.286	2.291	2.292
Au23, 25, 11–P1, 8, 207	2.292	2.294	2.292
Au15, 13, 18-P10, 6, 245	2.295	2.295	2.294
Au36, 46, 20-P12, 20, 172	2.295	2.295	2.294
Au39, 14, 13-P15, 5, 115	2.295	2.296	2.296
Au30, 43, 16-P13, 19, 77	2.298	2.301	2.298
Au35, 17, 9–P16, 3, 96	2.299	2.301	2.298
Au28, 4, 21–P11, 4, 134	2.306	2.301	2.299
Au20, 29, 22–P7, 2, 226	2.310	2.308	2.300
Au22, 34, 3–S10, 8, 35	2.373	2.374	2.362
Au12, 2, 15–S3, 2, 70	2.373	2.381	2.367
Au24, 3, 7–S10, 2, 44	2.374	2.384	2.368
Au8, 7, 12–S4, 9, 70	2.377	2.387	2.368
Au32, 16, 14–S1, 7, 53	2.378	2.387	2.372
Au21, 5, 6–S1, 9, 53	2.379	2.388	2.373
Au11, 31, 17–S5, 6, 54	2.388	2.389	2.375
Au19, 33, 8–83, 8, 35	2.389	2.390	2.375
Au27, 26, 10–85, 6, 44	2.391	2.393	2.376
Au9, 10, 5-S4, 7, 54	2.394	2.397	2.382
Au37, 40, 24–Cl1, 1A, 1	2.387	2.394	2.354
Au44, 42, 25-Cl2, 0A, 2	2.391	2.398	2.361

^a see cif files.

3. Additional Schemes

Scheme S1. Protocol for isolating high-purity [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl.

Scheme S2. Protocol for isolating high-purity [Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂].¹

4. Additional Figures

Figure S1. Purification of $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$ by (a) silica-gel column chromatography and (b) thin-layer chromatography to obtain high-purity samples. Red circles indicate $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$.

Figure S2. Schematic depiction of crystallization of (a) $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$ (slow evaporation) and (b) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$ (vapor diffusion).

Figure S3. Photographs of single crystals of (a) $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$ (block- and needle-like) and (b) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$ (block-like).

Figure S4. (a) Optical absorption spectra of dichloromethane solution and (b) positive-ion ESI mass spectra of block- and needle-like $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$.

Figure S5. (a) Positive-ion electrospray ionization (ESI) mass spectra of $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^{2+}$ in the region around m/z 4000 depending on the ESI conditions. The relative intensity of $[Au_{23}Pd(PPh_3)_9(SC_2H_4Ph)_5Cl_2]^{2+}$ depended on the dry condition in the ESI process, suggesting that the $[Au_{23}Pd(PPh_3)_9(SC_2H_4Ph)_5Cl_2]^{2+}$ is fragment ion generated from $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^{2+}$.

Figure S6. Unit cell of the crystal of [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl.

Figure S7. Full structures of $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl (Au_{24}Pd-I and Au_{24}Pd-II). Hydrogen atoms are not shown for clarity. In this figure, the counteranion could be assigned as a chloride ion. However, the highest Q peak observed in the solvent sphere was ~6, whereas the Q peak corresponding to a chloride attached to the core structure (Au) was around 20. The low Q peak value is attributed to the disordered nature of chloride ions because they never order very well in the solvent sphere. The presence of other Q peaks with smaller values (2–3) around chlorides in the solvent sphere indicates the diffuse nature of the chloride counteranion.$

Figure S8. Full structure of $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$. Hydrogen atoms are not shown for clarity. Although this cluster has two SbF_6 anions, one SbF_6 was disordered over 4 position and they were refined using SUMP command. At one such position, SbF_6 anion with occupancy (0.2662) could be fully assigned whereas remaining part was of the $[SbF_6]^-$ was partially assigned in additional three positions. Finally, four positions were refined using SUMP command in Olex2.

Figure S9. Au–P, Au–S, and Au–Cl bond lengths in (a) $Au_{24}Pd$ –I, (b) $Au_{24}Pd$ –II, and (c) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2].$

Figure S10. Au–S–Au angles in (a) $Au_{24}Pd$ –I, (b) $Au_{24}Pd$ –II, and (c) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2].$

Figure S11. Time dependence of optical absorption spectra of chloroform solution of (a) $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl and (b) [Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2].$

Figure S12. Positive-ion electrospray ionization mass spectra of (a) the precursor $Au_{n-x}Pd_x$ clusters obtained by increasing the quantity of Pd salt by three times in the synthesis and (b), (c) the products obtained from the reaction between the precursor $Au_{n-x}Pd_x$ clusters shown in (a) and PhC₂H₄SH at 61.2°C. In the experiments in (b) and (c), Cs salt was added to the solution to observe the neutral cluster as a cation. The parameters of the measurement were optimized to monitor the mass peaks around 8000 with strong intensity in (b) and those around 4000 with strong intensity in (c).

Figure S13. (a) Pd $3d_{3/2}$ spectrum and (b) Au 4f spectrum of $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl.$ In (b), Au 4f spectra of $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$ is also shown for comparison.

Figure S14. Comparison of the framework structures of (a) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$, (b) $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl (Au_{24}Pd-I)$, and (c) $[Au_{23}Pd_2(PPh_3)_{10}Br_7]^0$ (ref. 2).

Figure S15. Comparison of bond lengths between the central atom and surface atoms among $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$, $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl (Au_{24}Pd-I and Au_{24}Pd-II)$, and $[Au_{23}Pd_2(PPh_3)_{10}Br_7]^0$ (ref. 2). The metal core of $[Au_{23}Pd_2(PPh_3)_{10}Br_7]^0$ is most contracting in these clusters.

Figure S16. Photoluminescence (PL) spectra of (a) $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^+$ and (b) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^{2+}$. The estimated PL quantum yields of $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^+$ and (b) $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^{2+}$ were 2.4×10^{-5} and 1.0×10^{-3} , respectively. These results indicate that the single Pd substitution increases the PL quantum yield of the cluster only a little, different from the effect of Ag doping. It has been reported that substitution with 13 Ag atoms markedly increased the PL quantum yield of the cluster.³ In this case, the 13^{th} Ag atom could be located in the position that connects the two icosahedral 13-atom clusters. This position is related to the lowest unoccupied molecular orbital of the cluster and thereby this substituted in the central position of each icosahedral 13-atom core in $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]^+$. This substituent should affect the lowest unoccupied molecular orbital of the cluster only a little. This would be the reason why Pd substitution did not increase the PL quantum yield of the cluster.

5. Additional Crystal Structure Information

5.1. Crystal Data

Crystal data and some of the important structural refinement parameters for cluster (1-2) are given below. $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl: C_{220}H_{194.5}Au_{24.0125}Cl_3P_{10}Pd_{0.9875}S_5; M_w. 8249.32 g/mol; triclinic, P-1 (No. 2); a = 20.474(2) Å, b = 31.755(4) Å, c = 36.216(4) Å, a = 75.3930(10)^\circ, \beta = 74.9100(10)^\circ, \gamma = 84.0290(10)^\circ; V = 21981(4) Å^3; T = 100 K; Z = 4; \mu (Mo K_{\alpha}) = 16.236 mm^{-1}; Total 244227 reflections measured (2.452° <math>\leq 2\Theta \leq 53.44^\circ$) and unique reflections are 92330 (R_{int} = 0.0620) which were used in all calculations. Then Final *wR2* of all data was 0.1364 and *R1* was 0.0594 (I > 2 σ (I)).

[Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂]: C₂₂₀H₁₉₅Au₂₅Cl₂F_{10.6225}P₁₀S₅Sb_{2.0225}; M_w. 8751.88; monoclinic, P2₁/n (no. 14); a = 20.44900(14) Å, b = 35.9379(2) Å, c = 31.80647(19) Å, β = 91.1204(6)°; V = 23369.9(3) Å³; T = 113(2) K; Z = 4; μ(CuKα) = 32.178 mm⁻¹; Total reflections measured 250020 (4.972° ≤ 2Θ ≤ 147.276°) and unique reflections are 46597 unique (R_{int} = 0.0612) which were used in all calculations. Then Final *wR2* of all data was 0.1195 and *R1* was 0.0416 (I>2σ (I)).

All the details of crystal data and structural refinement parameters are tabulated in the followings.

Table	S3.	Details	of	Crystal	Data	and	Structural	Refinement	Parameters	in
[Au ₂₄ Pd	l(PPh ₃)10(SC ₂ H ₄ F	Ph)5Cl	l2]Cl and [A	Au ₂₅ (PPh	3)10(SC	2H4Ph)5Cl2][(S	SbF6)2].		

Cluster	$[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$	$[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2]$		
Empirical formula	$C_{220}H_{194.5}Au_{24.01}Cl_3P_{10}Pd_{0.99}S_5$	$C_{220}H_{195}Au_{25}Cl_2F_{10.62}P_{10}S_5Sb_{2.02}$		
Formula weight	8249.32	8751.88		
Temperature/K	100	113(2)		
Crystal system	triclinic	monoclinic		
Space group	P-1	$P2_1/n$		
a/Å	20.474(2)	20.44900(14)		
b/Å	31.755(4)	35.9379(2)		
c/Å	36.216(4)	31.80647(19)		
α/°	75.3930(10)	90		
β/°	74.9100(10)	91.1204(6)		
$\gamma/^{\circ}$	84.0290(10)	90		
Volume/Å ³	21981(4)	23369.9(3)		
Z	4	4		
$\rho_{calc}g/cm^3$	2.493	2.487		
μ/mm^{-1}	16.236	32.178		
F(000)	14952.0	15811.0		
Crystal size/mm ³	0.22 imes 0.18 imes 0.09	0.2 imes 0.16 imes 0.08		
Radiation MoKa	MoK α ($\lambda = 0.71073$)	$CuK\alpha \ (\lambda = 1.54184)$		
2Θ range for data collection/°	2.452 to 53.44	4.972 to 147.276		
Index ranges	$-25 \le h \le 25, -40 \le k \le 40, -45 \le l \le 45$	$-25 \le h \le 23, -44 \le k \le 44, -37 \le l \le 39$		
Reflections collected	244227	250020		
Independent reflections	92330 [$R_{int} = 0.0620, R_{sigma} = 0.0918$]	$46597 [R_{int} = 0.0612, R_{sigma} = 0.0382]$		
Data/restraints/ parameters	92330/9498/4198	46597/2848/2504		
Goodness-of-fit on F^2	1.049	1.072		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0594, wR_2 = 0.1158$	$R_1 = 0.0416$, $wR_2 = 0.1158$		
Final R indexes [all data]	$R_1 = 0.1148, wR_2 = 0.1364$	$R_1 = 0.0489, wR_2 = 0.1195$		
Largest diff. peak/hole/ eÅ ⁻³	4.06/-2.54	3.58/-2.59		

5.2. Structure Quality Indicators and Refinement Details

SADABS-2016/2⁴ (Bruker 2016/6) was used for absorption correction for the crystal CrysAlisPro version 1.171.39.20a used $[Au_{24}Pd(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$ and was for $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2][(SbF_6)_2].$

First initial model of each structure of all the clusters containing heavy atoms (metal, sulfur, coordinated chloride and phosphorous atoms) and most of the carbon atoms of phosphine and few carbon atoms of thiolates were solved by Shelxt using intrinsic phasing method⁵ (for [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl) and SIR-92 using direct method⁶ (for [Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂]). Total structures of all the clusters were refined by full-matrix least-squares method against F² by SHELXL-2018/3⁷ using Olex2 software.⁸ Some high Q peaks appearing inside or near to cluster cores are artifacts derived from Fourier truncation errors. In [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl, one of the counter chloride anions was refined isotropically. Some Q peaks (value around 2-3) around chloride anion were kept unassigned as to give reviewers and as well as readers a view of the situation where chloride ions are disordered over the solvent sphere. Due to that unassigned Q peaks and as well as unassigned Q peak near to the metal, an alert "VERY LARGE Solvent Accessible VOID(S) in Structure" comes in the check cif file. Also, [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl has few disordered $-C_2H_4Ph$ of thiolate and -Ph of phosphine ligands which were modeled (using PART command) and refined (details of occupancies are given in cif file). Finally, positions and extent of Pd were determined by substitutional disorder refinement (detail results are summarized in the following table S4). In $[Au_{25}(PPh_3)_{10}(SC_2H_4Ph_5Cl_2]](SbF_6)_2]$, although it has two SbF₆ anions, however, one SbF₆ was disordered over 4 position and they were refined using SUMP command. At one such position, SbF₆ anion with occupancy (0.2662) could be fully assigned whereas remaining part was of the [SbF₆]⁻ was partially assigned in additional three positions (Table S5). Over all four positions was refined using SUMP command in Olex2. In both the structure, the hydrogen atoms were placed at calculated positions with the exception of disordered H atoms, and their positions were refined with a riding model. During overall refinement, several restrain and constrain (EXYZ, ISOR, RIGU, SIMU, DFIX, AFIX 66 and EADP) have been used.

	molecule 1 of th	ne asymmetric unit	molecule 2 of the asymmetric unit			
	Atom position	Occupancy	Atom position	Occupancy		
Issaahaduau	Au47	0.510(6)	Au49	0.494(6)		
Icosanedron	Pd47	0.490(6)	Pd49	0.506(6)		
core	Au48	0.508(6)	Au50	0.511(6)		
Central	Pd48	0.492(6)	Pd48	0.492(6)		
Icosahedron shared vertex	Au6	1	Au1	1		
Each	Au	1	Au	1		
surface metal	Pd	0	Pd	0		
Metallic occupancy of individual molecule	$Au_{24.01}Pd_{0.99}$					
Molecular formula from crystallography	$[Au_{24.01}Pd_{0.99}(PPh_3)_{10}(SC_2H_4Ph)_5Cl_2]Cl$					

Table S4.	Atomic	Occupancy	(Au/Pd)	of [Au ₂	Pd(PPh ₃) ₁₀	(SC ₂ H ₄ Ph) ₅ (Cl ₂ Cl.
			(· · · ·	(.)10	(1)5	

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
Sb2	0.267(3)	F11	0.267(3)	F8	0.267(3)
F7	0.267(3)	F12	0.267(3)	F10	0.267(3)
F9	0.267(3)	Sb3	0.377(4)	Sb4	0.261(4)
Sb5	0.237(9)	F18	0.377(4)	F14	0.377(4)
F17	0.377(4)	F15	0.377(4)	F13	0.377(4)
F104	0.261(4)	F121	0.261(4)	F178	0.261(4)
F290	0.261(4)	F125	0.095(4)		

Table S5. Occupancy Detail of Disordered SbF₆ Anion of [Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂].

5.3. Additional Refinement Detail of Each Cluster

5.3.1. [Au₂₄Pd(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂]Cl

5.3.1.1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups, All C(H,H,H,H) groups

5.3.1.2. Shared sites

 $\{Au47,\,Pd47\}\,\{Au48,\,Pd48\}\,\{Au49,\,Pd49\}\,\{Au50,\,Pd50\}$

5.3.1.3. Restrained distances

C419-C385, 1.52 with sigma of 0.02 C419-C417, 1.52 with sigma of 0.02 C471-C477,1.52 with sigma of 0.02 C346-C477, 1.52 with sigma of 0.02 C427-C353, 1.47 with sigma of 0.02 C418 C353,1.55 with sigma of 0.02 **5.3.1.4.** Restrained planarity

C381, C380, C379, C384, C383, C382 with sigma of 0.1, C367, C366, C368, C369, C370, C371 with sigma of 0.1

5.3.1.5. Uiso/Uaniso restraints and constraints

All non-hydrogen atoms have similar U: within 1.7A with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(C397) \approx Ueq, Uanis(C398) \approx Ueq, Uanis(C399) \approx Ueq, Uanis(C400) \approx Ueq, Uanis(C401) \approx Ueq, Uanis(C402) \approx Ueq, Uanis(C367) \approx Ueq, Uanis(C368) \approx Ueq, Uanis(C369) \approx Ueq, Uanis(C370) \approx Ueq, Uanis(C371) \approx Ueq, Uanis(C366) \approx Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(C417) \approx Ueq, Uanis(C419) \approx Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(C392) \approx Ueq, Uanis(C393) \approx Ueq, Uanis(C394) \approx Ueq, Uanis(C395) \approx Ueq, Uanis(C396) \approx Ueq, Uanis(C391) \approx Ueq, Uanis(C465) \approx Ueq, Uanis(C466) \approx Ueq, Uanis(C467) \approx Ueq, Uanis(C468) \approx Ueq, Uanis(C469) \approx Ueq, Uanis(C470) \approx Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.001 Uanis(C418) \approx Ueq, Uanis(C353) \approx Ueq, Uanis(C427) \approx Ueq, Uanis(C426) \approx Ueq, Uanis(C431) \approx Ueq, Uanis(C428) \approx Ueq, Uanis(C429) \approx Ueq, Uanis(C430) \approx Ueq, Uanis(C346) \approx Ueq, Uanis(C477) \approx Ueq, Uanis(C471) \approx Ueq, Uanis(C472) \approx Ueq, Uanis(C473) \approx Ueq, Uanis(C474) \approx Ueq, Uanis(C475) \approx Ueq, Uanis(C476) \approx Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(C327) \approx Ueq, Uanis(C328) \approx Ueq, Uanis(C461) \approx Ueq, Uanis(C326) \approx Ueq, Uanis(C459) \approx Ueq, Uanis(C460) \approx Ueq, Uanis(C329) \approx Ueq, Uanis(C462) \approx Ueq, Uanis(C330) \approx Ueq, Uanis(C463) \approx Ueq, Uanis(C325) \approx Ueq, Uanis(C464) \approx Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.001, Uanis(Au49) = Uanis(Pd49), Uanis(Au50) = Uanis(Pd50), Uanis(Au47) = Uanis(Pd47), Uanis(Au48) = Uanis(Pd48)

5.3.1.6. Rigid body (RIGU) restrains

All non-hydrogen atoms with sigma for 1-2 distances of 0.002 and sigma for 1-3 distances of 0.002 **5.3.1.7. Others**

 $\begin{array}{l} Sof(Pd47) = 1 - FVAR(1), \ Sof(Au47) = FVAR(1), \ Sof(Pd48) = 1 - FVAR(2), \ Sof(Au48) = FVAR(2), \ Sof(Pd49) = 1 - FVAR(3), \ Sof(Au49) = FVAR(3), \ Sof(Pd50) = 1 - FVAR(4), \ Sof(Au50) = FVAR(4), \ Sof(C433) = Sof(C434) = Sof(C434) = Sof(C435) = Sof(C435) = Sof(C436) = Sof(C436) = Sof(C437) = Sof(C437) = Sof(C438) = Sof(C438) = Sof(H438) = 1 - FVAR(5), \ Sof(C360) = Sof(H360) = Sof(C361) = Sof(H361) = Sof(C362) = Sof(H362) = Sof(C363) = Sof(H363) = Sof(C364) =$

Sof(H364)=Sof(C365)=FVAR(5), Sof(C420)=Sof(C421)=Sof(C422)=Sof(H422)=Sof(C423)=Sof(C423)=Sof(C424)=Sof(H424)=

Sof(C425)=Sof(H425)=1-FVAR(6), Sof(C439)=Sof(C440)=Sof(H440)=Sof(C441)=Sof(H441)=Sof(C442)=Sof(H442)=Sof(C443)=Sof(H443)=Sof(C444)=Sof(H444)=FVAR(6),

Sof(H37C)=Sof(H37D)=Sof(C445)=Sof(H445)=Sof(C446)=Sof(H446)=Sof(C447)=Sof(H447)=Sof(C448)=Sof(H448)=Sof(C449)=Sof(H449)=Sof(C450)=Sof(C452)=Sof(H45C)=Sof(H45D)=1-FVAR(7),

Sof(H37A) = Sof(H37B) = Sof(C410) = Sof(C411) = Sof(H411) = Sof(C412) = Sof(H412) = Sof(C413) = Sof(C413) = Sof(C414) = Sof(C414) = Sof(C415) = Sof(H415) = Sof(C451) = Sof(H45A) = Sof(H45B) = FVAR(7),

Sof(C453)=Sof(C454)=Sof(H454)=Sof(C455)=Sof(H455)=Sof(C456)=Sof(H456)=Sof(C457)=Sof(H457)=

Sof(C458)=Sof(H458)=1-FVAR(8),

Sof(C347)=Sof(H347)=Sof(C348)=Sof(H348)=Sof(C349)=Sof(H349)=Sof(C350)=Sof(H350)=Sof(C351)=Sof(H351)=Sof(C352)=FVAR(8),

Sof(C459)=Sof(H459)=Sof(C460)=Sof(H460)=Sof(C461)=Sof(H461)=Sof(C462)=Sof(H462)=Sof(C463)=Sof(C463)=Sof(C464)=1-FVAR(9),

Sof(C325)=Sof(C326)=Sof(H326)=Sof(C327)=Sof(H327)=Sof(C328)=Sof(H328)=Sof(C329)=Sof(H329)=Sof(C330)=Sof(H330)=FVAR(9),

Sof(C465)=Sof(C466)=Sof(H466)=Sof(C467)=Sof(H467)=Sof(C468)=Sof(H468)=Sof(C469)=Sof(H469)=Sof(C470)=Sof(H470)=1-FVAR(10),

Sof(C391)=Sof(C392)=Sof(H392)=Sof(C393)=Sof(H393)=Sof(C394)=Sof(H394)=Sof(C395)=Sof(H395)=Sof(C396)=Sof(H396)=FVAR(10)

5.3.1.8.a Secondary CH₂ refined with riding coordinates

C234(H23A,H23B), C235(H23C,H23D), C236(H23E,H23F), C237(H23G,H23H), C239(H23I,H23J), C240(H24A,H24B), C253(H25A,H25B), C260(H26A,H26B), C274(H27A,H27B), C299(H29A,H29B), C338(H33A,H33B), C346(H34A,H34B), C353(H35A,H35B), C378(H37A,H37B), C378(H37C,H37D), C403(H40A,H40B), C417(H41A,H41B), C418(H41E,H41F), C419(H41C,H41D), C451(H45A,H45B), C452(H45C,H45D), C477(H47A,H47B)

5.3.1.8.b Aromatic/amide H refined with riding coordinates

C2(H2), C3(H3), C4(H4), C5(H5), C6(H6), C8(H8), C9(H9), C10(H10), C11(H11), C13(H13), C14(H14), C15(H15), C16(H16), C17(H17), C19(H19), C20(H20), C21(H21), C22(H22), C23(H23), C25(H25), C26(H26), C27(H27), C28(H28), C29(H29), C32(H32), C33(H33), C34(H34), C35(H35), C37(H37), C38(H38), C39(H39), C40(H40), C41(H41), C43(H43), C44(H44), C45(H45), C46(H46), C47(H47), C49(H49), C50(H50), C51(H51), C52(H52), C53(H53), C55(H55), C56(H56), C57(H57), C58(H58), C59(H59), C61(H61), C62(H62), C63(H63), C64(H64), C65(H65), C67(H67), C68(H68), C69(H69), C70(H70), C71(H71), C73(H73), C74(H74), C75(H75), C76(H76), C77(H77), C79(H79), C80(H80), C81(H81), C82(H82), C83(H83), C85(H85), C86(H86), C87(H87), C88(H88), C89(H89), C91(H91), C92(H92), C93(H93), C94(H94), C95(H95), C97(H97), C98(H98), C99(H99), C100(H100), C101(H101), C103(H103), C104(H104), C105(H105), C106(H106), C107(H107), C109(H109), C110(H110), C111(H111), C112(H112), C113(H113), C115(H115), C116(H116), C117(H117), C118(H118), C119(H119), C121(H121), C122(H122), C123(H123), C124(H124), C125(H125), C127(H127), C128(H128), C129(H129), C130(H130), C131(H131), C133(H133), C134(H134), C135(H135), C136(H136), C137(H137), C139(H139), C140(H140), C141(H141), C142(H142), C143(H143), C145(H145), C146(H146), C147(H147), C148(H148), C149(H149), C151(H151), C152(H152), C153(H153), C154(H154), C155(H155), C157(H157), C158(H158), C159(H159), C160(H160), C161(H161), C163(H163), C164(H164), C165(H165), C166(H166), C167(H167), C169(H169), C170(H170), C171(H171), C172(H172), C173(H173), C175(H175), C176(H176), C177(H177), C178(H178), C179(H179), C181(H181), C182(H182), C183(H183), C184(H184), C185(H185), C187(H187), C188(H188), C189(H189), C190(H190), C191(H191), C193(H193), C194(H194), C195(H195), C196(H196), C197(H197), C199(H199), C200(H200), C201(H201), C202(H202), C203(H203), C205(H205), C206(H206), C207(H207), C208(H208), C209(H209), C211(H211), C212(H212), C213(H213), C214(H214), C215(H215), C217(H217), C218(H218), C219(H219), C220(H220), C221(H221), C223(H223), C224(H224), C225(H225), C226(H226), C227(H227), C229(H229), C230(H230), C231(H231), C232(H232), C233(H233), C238(H238), C242(H242), C243(H243), C244(H244), C245(H245), C246(H246), C248(H248), C249(H249), C250(H250), C251(H251), C252(H252), C255(H255), C256(H256), C257(H257), C258(H258), C259(H259), C262(H262), C263(H263), C264(H264), C265(H265), C266(H266), C269(H269), C270(H270), C271(H271), C272(H272), C273(H273), C276(H276), C277(H277), C278(H278), C279(H279), C280(H280), C282(H282), C283(H283), C284(H284), C285(H285), C286(H286), C288(H288), C289(H289), C290(H290), C291(H291), C292(H292), C294(H294), C295(H295), C296(H296), C297(H297), C298(H298), C300(H300), C302(H302), C303(H303), C304(H304), C305(H305), C306(H306), C308(H308), C309(H309), C310(H310), C311(H311), C312(H312), C314(H314), C315(H315), C316(H316), C317(H317), C318(H318), C320(H320), C321(H321), C322(H322), C323(H323), C324(H324), C326(H326), C327(H327), C328(H328), C329(H329), C330(H330), C332(H332), C333(H333), C334(H334), C335(H335), C336(H336), C337(H337), C339(H339), C341(H341), C342(H342), C343(H343), C344(H344), C345(H345), C347(H347), C348(H348), C349(H349), C350(H350), C351(H351), C355(H355), C356(H356), C357(H357), C358(H358), C359(H359), C360(H360), C361(H361), C362(H362), C363(H363), C364(H364), C366(H366), C368(H368), C369(H369), C370(H370), C371(H371), C373(H373), C374(H374), C375(H375), C376(H376), C377(H377), C379(H379), C380(H380), C382(H382), C383(H383), C384(H384), C386(H386), C387(H387), C388(H388), C389(H389), C390(H390), C392(H392), C393(H393), C394(H394), C395(H395), C396(H396), C398(H398), C399(H399), C400(H400), C401(H401), C402(H402), C405(H405), C406(H406), C407(H407), C408(H408), C409(H409), C411(H411), C412(H412), C413(H413), C414(H414), C415(H415), C416(H416), C421(H421), C422(H422), C423(H423), C424(H424), C425(H425), C426(H426), C428(H428), C429(H429), C430(H430), C431(H431), C432(H432), C434(H434), C435(H435), C436(H436), C437(H437), C438(H438), C440(H440), C441(H441), C442(H442), C443(H443), C444(H444), C445(H445), C446(H446), C447(H447), C448(H448), C449(H449), C454(H454), C455(H455), C456(H456), C457(H457), C458(H458), C459(H459), C460(H460), C461(H461), C462(H462), C463(H463), C466(H466), C467(H467), C468(H468), C469(H469), C470(H470), C472(H472), C473(H473), C474(H474), C475(H475), C476(H476) 5.3.1.8.c Fitted hexagon refined as free rotating group C1(C2,C3,C4,C5,C6), C12(C13,C14,C15,C16,C17), C18(C19,C20,C21,C22,C23), C24(C25,C26,C27,C28,C29), C30(C31,C32,C33,C34,C35), C36(C37,C38,C39,C40,C41), C54(C55,C56,C57,C58,C59), C42(C43,C44,C45,C46,C47), C48(C49,C50,C51,C52,C53), C60(C61,C62,C63,C64,C65), C66(C67,C68,C69,C70,C71), C72(C73,C74,C75,C76,C77), C78(C79,C80,C81,C82,C83), C90(C91,C92,C93,C94,C95), C84(C85,C86,C87,C88,C89), C96(C97,C98,C99,C100,C101), C102(C103,C104,C105,C106,C107), C108(C109,C110, C111,C112,C113), C120(C121,C122,C123,C124,C125), C114(C115,C116,C117,C118,C119), C126(C127,C128,C129,C130,C131), C132(C133,C134,C135,C136,C137), C138(C139,C140,C141,C142,C143), C144(C145,C146,C147,C148,C149), C150(C151,C152, C162(C163,C164,C165,C166,C167), C156(C157,C158,C159,C160,C161), C153,C154,C155), C168(C169,C170,C171,C172,C173), C174(C175,C176,C177,C178,C179), C180(C181,C182,C183,C184,C185), C186(C187,C188,C189,C190,C191), C192(C193,C194,C195,C196,C197), C198(C199,C200,C201,C202,C203), C204(C205,C206,C207,C208,C209), C210(C211,C212,C213,C214,C215), C216(C217,C218,C219,C220,C221), C222(C223,C224,C225,C226,C227), C228(C229,C230,C231,C232,C233), C241(C242,C243,C244,C245,C246), C247(C248,C249,C250,C251,C252), C254(C255,C256,C257,C258,C259), C268(C269,C270,C271,C272,C273), C261(C262,C263,C264,C265,C266), C275(C276,C277,C278,C279,C280), C281(C282,C283,C284,C285,C286), C287(C288,C289,C290,C291,C292), C293(C294,C295,C296,C297,C298), C301(C302,C303,C304,C305,C306), C307(C308,C309,C310,C311,C312), C313(C314.C315.C316.C317.C318). C319(C320,C321,C322,C323,C324). C325(C326,C327,C328,C329,C330), C331(C332,C333,C334,C335,C336), C340(C341,C342,C343,C344,C345), C347(C348,C349,C350,C351,C352), C354(C355,C356,C357,C358,C359), C360(C361,C362,C363,C364,C365), C366(C367,C368,C369,C370,C371), C372(C373,C374,C375,C376,C377), C379(C380,C381,C382,C383,C384), C385(C386,C387,C388,C389,C390), C391(C392,C393,C394,C395,C396), C397(C398,C399,C400,C401,C402), C404(C405,C406,C407,C408,C409), C410(C411,C412,C413,C414,C415), C420(C421,C422,C423,C424,C425). C426(C427,C428,C429,C430,C431), C433(C434,C435,C436,C437,C438), C439(C440,C441,C442,C443,C444), C445(C446,C447,C448,C449,C450), C453(C454,C455,C456,C457,C458), C465(C466,C467,C468,C469,C470), C471(C472,C473,C474,C475,C476)

C+05(C+00,C+07,C+00,C+07,C+70), C+71(C+72,C+75,C+74,C+75,

5.3.2. [Au₂₅(PPh₃)₁₀(SC₂H₄Ph)₅Cl₂][(SbF₆)₂]

Number of restraints - 2848, number of constraints - unknown.

5.3.2.1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

5.3.2.2. Restrained distances

Sb2-F11 \approx Sb2-F8 \approx Sb2-F7 \approx Sb2-F12 \approx Sb2-F10 \approx Sb2-F9 with sigma of 0.02, F11-F8 \approx F11-F7 \approx F11-F12 \approx F11-F10 \approx F8-F7 \approx F8-F10 \approx F8-F9 \approx F7-F12 \approx F7-F9 \approx F12-F10 \approx F12-F9 \approx F10-F9 with sigma of 0.04

5.3.2.3. Uiso/Uaniso restraints and constraints

 $\begin{array}{l} C1\approx C2\approx C3\approx C4\approx C5\approx C6\approx C7\approx C8\approx C9\approx C10\approx C11\approx C12\approx C13\approx C14\approx C15\approx C16\approx C17\approx C18\\ \approx C19\approx C20\approx C21\approx C22\approx C23\approx C24\approx C25\approx C26\approx C27\approx C28\approx C29\approx C30\approx C31\approx C32\approx C33\approx C34\approx C35\approx C36\approx C37\approx C38\approx C39\approx C40\approx C41\approx C42\approx C43\approx C44\approx C45\approx C46\approx C47\approx C48\approx C49\approx C50\approx C51\approx C52\approx C53\approx C54\approx C55\approx C56\approx C57\approx C58\approx C59\approx C60\approx C61\approx C62\approx C63\approx C64\approx C65\approx C66\approx C67\approx C68\approx C69\approx C70\approx C71\approx C72\approx C73\approx C74\approx C75\approx C76\approx C77\approx C78\approx C79\approx C80\approx C81\approx C82\approx C99\approx C100\approx C101\approx C102\approx C103\approx C104\approx C105\approx C106\approx C107\approx C108\approx C109\approx C124\approx C125\approx C126\approx C126\approx C126\approx C126\approx C126\approx C126\approx C112\approx C112\approx C112\approx C112\approx C112\approx C112\approx C122\approx C123\approx C124\approx C125\approx C126\approx C129\approx C129\approx C120\approx C120\approx C136\approx C137\approx C138\approx C139\approx C139$

 $C140 \approx C141 \approx C142 \approx C143 \approx C144 \approx C145 \approx C146 \approx C147 \approx C148 \approx C149 \approx C150 \approx C151 \approx C152 \approx C153$ $\approx C154 \approx C155 \approx C156 \approx C157 \approx C158 \approx C159 \approx C160 \approx C161 \approx C162 \approx C163 \approx C164 \approx C165 \approx C166 \approx C166$ $C167 \approx C168 \approx C169 \approx C170 \approx C171 \approx C172 \approx C173 \approx C174 \approx C175 \approx C176 \approx C177 \approx C178 \approx C179 \approx C180$ $\approx C181 \approx C182 \approx C183 \approx C184 \approx C185 \approx C186 \approx C187 \approx C188 \approx C189 \approx C190 \approx C191 \approx C192 \approx C193 \approx C193 \approx C191 \approx C192 \approx C193 \approx C193$ $C194 \approx C195 \approx C196 \approx C197 \approx C198 \approx C199 \approx C200 \approx C201 \approx C202 \approx C203 \approx C204 \approx C205 \approx C206 \approx C207$ \approx C208 \approx C209 \approx C210 \approx C211 \approx C212 \approx C213 \approx C214 \approx C215 \approx C216 \approx C217 \approx C218 \approx C219 \approx C220: within 1.7A with sigma of 0.02 and sigma for terminal atoms of 0.04, $Sb2 \approx F11 \approx F8 \approx F7 \approx F12 \approx F10 \approx F9$; within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08, Uanis(Sb5) \approx Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.002, Uanis(Sb4) \approx Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.002, Uanis(F125) \approx Ueq: with sigma of 0.005 and sigma for terminal atoms of 0.002, Uanis(C113) = Uanis(C116) 5.3.2.4 Rigid body (RIGU) restrains

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C50, C51, C52, C53, C54, C55, C56, C57, C58, C59, C60, C61, C62, C63, C64, C65, C66, C67, C68, C69, C70, C71, C72, C73, C74, C75, C76, C77, C78, C79, C80, C81, C82, C83, C84, C85, C86, C87, C88, C89, C90, C91, C92, C93, C94, C95, C96, C97, C98, C99, C100, C101, C102, C103, C104, C105, C106, C107, C108, C109, C110, C111, C112, C113, C114, C115, C116, C117, C118, C119, C120, C121, C122, C123, C124, C125, C126, C127, C128, C129, C130, C131, C132, C133, C134, C135, C136, C137, C138, C139, C140, C141, C142, C143, C144, C145, C146, C147, C148, C149, C150, C151, C152, C153, C154, C155, C156, C157, C158, C159, C160, C161, C162, C163, C164, C165, C166, C167, C168, C169, C170, C171, C172, C173, C174, C175, C176, C177, C178, C179, C180, C181, C182, C183, C184, C185, C186, C187, C188, C189, C190, C191, C192, C193, C194, C195, C196, C197, C198, C199, C200, C201, C202, C203, C204, C205, C206, C207, C208, C209, C210, C211, C212, C213, C214, C215, C216, C217, C218, C219, C220 with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004, Sb2, F11, F8, F7, F12, F10, F9 with sigma for 1-2 distances of 0.004 and sigma for 1-3 distances of 0.004

5.3.2.5. Others

1*[Sof(Sb2)+Sof(F11)+Sof(F8)+Sof(F7)+Sof(F12)+Sof(F10)+Sof(F9)]+1*[Sof(Sb3)+Sof(F18)+Sof(F14)+Sof(F18)+Sof(F1of(F17)+Sof(F15)+Sof(F13)]+1*[Sof(Sb4)+Sof(F104)+Sof(F121)+Sof(F178)+Sof(F290)]+1*[Sof(Sb5)+Sof (F125)]=1 with esd of 0.001, Sof(Sb2)=Sof(F11)=Sof(F8)=Sof(F7)=Sof(F12)=Sof(F10)=Sof(F9)=FVAR(1), Sof(Sb3)=Sof(F18)=Sof(F14)=Sof(F17)=Sof(F15)=Sof(F13)=FVAR(2),

Sof(Sb4)=Sof(F104)=Sof(F121)=Sof(F178)=Sof(F290)=FVAR(3),Sof(Sb5)=1.25*FVAR(5)

Sof(F125)=FVAR(4),

5.3.2.6.a Secondary CH2 refined with riding coordinates

C3(H3A,H3B), C9(H9A,H9B), C28(H28A,H28B), C78(H78A,H78B), C80(H80A, H80B), C81(H81A,H81B), C117(H11A,H11B), C143(H14A,H14B), C153(H15A,H15B), C154(H15C,H15D) 5.3.2.6.b Aromatic/amide H refined with riding coordinates

C5(H5), C10(H10), C15(H15), C17(H17), C20(H20), C21(H21), C22(H22), C23(H23), C24(H24), C25(H25), C26(H26), C27(H27), C30(H30), C31(H31), C32(H32), C33(H33), C36(H36), C37(H37), C38(H38), C39(H39), C97(H97), C187(H187), C209(H209), C136(H136), C34(H34), C42(H42), C43(H43), C44(H44), C45(H45), C46(H46), C48(H48), C49(H49), C51(H51), C52(H52), C55(H55), C56(H56), C57(H57), C58(H58), C60(H60), C61(H61), C62(H62), C63(H63), C64(H64), C65(H65), C66(H66), C67(H67), C68(H68), C69(H69), C70(H70), C71(H71), C72(H72), C73(H73), C76(H76), C77(H77), C79(H79), C82(H82), C83(H83), C84(H84), C86(H86), C87(H87), C88(H88), C89(H89), C90(H90), C91(H91), C92(H92), C93(H93), C94(H94), C95(H95), C96(H96), C98(H98), C99(H99), C100(H100), C101(H101), C102(H102), C104(H104), C105(H105), C106(H106), C107(H107), C110(H110), C112(H112), C113(H113), C114(H114), C115(H115), C116(H116), C118(H118), C119(H119), C120(H120), C121(H121), C122(H122), C123(H123), C124(H124), C126(H126), C127(H127), C128(H128), C129(H129), C130(H130), C131(H131), C132(H132), C133(H133), C135(H135), C137(H137), C138(H138), C139(H139), C140(H140), C141(H141), C142(H142), C144(H144), C145(H145), C148(H148), C149(H149), C150(H150), C151(H151), C152(H152), C155(H155), C156(H156), C157(H157), C158(H158), C160(H160), C161(H161), C162(H162), C163(H163), C164(H164), C165(H165), C166(H166), C167(H167), C168(H168), C169(H169), C170(H170), C171(H171), C173(H173), C174(H174), C175(H175), C176(H176), C177(H177), C178(H178), C179(H179), C180(H180), C181(H181), C182(H182), C183(H183), C184(H184), C185(H185), C186(H186), C188(H188), C189(H189), C190(H190), C191(H191), C192(H192), C193(H193), C194(H194), C195(H195), C196(H196), C197(H197), C198(H198), C199(H199), C200(H200), C201(H201), C202(H202), C203(H203), C204(H204), C205(H205), C206(H206), C207(H207), C208(H208), C210(H210), C211(H211), C212(H212), C213(H213), C214(H214), C215(H215), C216(H216), C217(H217), C218(H218), C219(H219), C220(H220) 5.3.2.6.c Fitted hexagon refined as free rotating group

C41(C97,C187,C209,C136,C34), C111(C112,C113,C114,C115,C116), C125(C126,C127,C128,C129,C130),

C159(C160,C161,C162,C163,C164)

6. References

- Y. Shichibu, Y. Negishi, T. Watanabe, N. K. Chaki, H. Kawaguchi and T. Tsukuda, *J. Phys. Chem. C*, 2007, 111, 7845–7847.
- [2] X. Kang, J. Xiang, Y. Lv, W. Du, H. Yu, S. Wang and M. Zhu, Chem. Mater., 2017, 29, 6856-6862.
- [3] S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu and R. Jin, Angew. Chem., Int. Ed., 2014, 53, 2376–2380.
- [4] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3-10.
- [5] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. S. Camalli, J. Appl. Cryst. 1994, 27, 435.
- [6] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- [7] G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.