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CGMD simulations: Methodology and interaction potentials

In our CGMD simulations, the non-bonded bead-bead interactions are described by potentials
UWCA and UCOS, and the bonded bead-bead interactions are described by potentials UFENE and
Uharmonic as follows.

UWCA(r) = 4ε
[
(ασb/r)12 − (ασb/r)6 +1/4

]
(0 < r < rcut),

UCOS(r) =
{

−ε +UWCA(r) (0 < r < rcut),
−εcos2 [π(r− rcut)/(2w)] (rcut < r < rcut +w),

UFENE(r) =−1
2kFENEr2

∞ ln
(
1− r2/r2

∞
)

(0 < r < r∞),

Uharmonic(r) = 1
2kharmonic(r− r0)

2,

where rcut = 21/6ασb, ε and σb are the energy well depth and bead diameter, respectively. Values
of parameters α and w in the non-bonded interaction potentials are listed in Table S1. The bead
diameter σb is set to be 1 nm to construct a lipid bilayer with an appropriate membrane thickness
and area per lipid. To ensure the mechanical properties of the lipid membrane falling in a range
measured experimentally, we chose ε as 0.56 kcal ·mol−1, which scales the unit thermal energy
as kBT = 1.1ε(T = 310 K). Each lipid molecule is approximated by three connected beads with
one hydrophilic head bead and two hydrophobic tail beads. The nearest neighbor beads in each
lipid molecule are connected by FENE bonds with kFENE = 30ε = 16.8 kcal ·mol−1 · nm−2 and
r∞ = 1.5σb = 1.5 nm. The head bead is also connected to the second tail bead by a harmonic bond
with a rest length r0 = 4σb = 4 nm and force constant kharmonic = 10ε = 5.6 kcal ·mol−1 · nm−2.
Nanorods of different sizes were constructed by multi-walled coarse-grained beads folded from
two-dimensional triangular lattices with nearest beads of distance 1.3σ . Different shapes of the
nanorods were constructed by deleting the corresponding redundant beads from the cylindrical
nanorods. Fig. S1a shows selected nanorods of different sizes and shapes. To illustrate how the
encapsulated nanorod is created, we take the cylindrical nanorod as an example. A short nanorod
consisting of two equal parts, each of length 20 nm, was first put at the center of a vesicle of radius
50 nm. Then these two parts were pulled slowly in opposite directions at a constant speed (1 m/s) in
the simulations. Eventually the intermediate trajectory (Fig. S1b) was obtained and used to create
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the initial model of the encapsulated nanorod by replacing these two separated parts with a single
nanorod (Fig. S1c). Encapsulated nanotubes of non-uniform diameters are built following a similar
scheme. With the initial system configurations shown in Fig. S1c for nanorods of different sizes, the
CGMD simulations were performed under a constant ambient temperature with a time step fixed
at 100 fs. The encapsulated nanorod was fixed while the vesicle membrane was allowed to move
freely during simulations. After equilibrium is reached, a 100 ns simulation is performed and we
split the nanorod into two parts (as demonstrated in Fig. S1d). As the nanorod is fixed, the axial
contact force on each nanorod part equals to the balancing force, a total force on each part which
is determined and recorded by LAMMPS. Fig. S1e shows the time evolution of the axial contact
force and the corresponding averaged value in the case of a uniform nanorod at a/R = 0.2 and
L/R = 4.2 from MD simulations.

Fig. S1: (a) Selected examples of coarse-grained model of nanorods of different sizes and shapes.
(b) Time sequences of a pulling simulation scheme. (c) The initial system configurations of vesicles
encapsulating cylindrical nanorods of different lengths. (d) The equilibrium configuration used to
determine the axial contact force. (e) Time evolution of the axial contact force and the correspond-
ing averaged value in the case of a uniform nanorod at a/R = 0.2 and L/R = 4.2 from the MD
simulations.

Results from theoretical analysis and MD simulations

Fig. S2 shows that the membrane tension σ gradually increases to a peak, followed by severe de-
clines initiating with or exhibiting a discontinuous drop. Note that σ at a large L could be significantly
smaller than that at L/R = 2.
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Table S1: Parameters of non-bonded interactions.
bead type bead type interaction parameters
lipid head lipid head WCA α = 0.95
lipid head lipid tail WCA α = 0.95
lipid tail lipid tail COS α = 0.95,w = 1.6σ
nanorod lipid head/tail WCA α = 0.95
nanorod nanorod WCA α = 0.95
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Fig. S2: Normalized membrane tension σR2/κ as a function of the normalized nanorod length L/R
for different values of the normalized nanorod radius a/R.
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Fig. S3: (a) Normalized effective axial contact force FR/κ and (b) normalized effective membrane
tension σR2/κ as functions of L/R at ∆p = 200κ/R3.

For the vesicle at a fix pressure difference ∆p = βκ/R3, decreasing (or increasing) the vesicle
size is equivalent to decrease (or increase) the parameter β . To investigate the effect of the vesicle
size on the mechanical interplay between the encapsulated nanorod and the vesicle, we perform
case studies of β = 200 (Fig. S3) as a comparison case with β = 400 in the main text. Though both
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the normalized axial contact force FR/κ and membrane tension σR2/κ decrease as β decreases,
the trends are quite similar to the case of β = 400 (Figs. 2a and S2). As ∆p ∼ β for a certain
vesicle, we can also conclude that the axial contact force and membrane tension increase as the
pressure difference increases.

0,
0.01,0.15,

/
0.2,0.25,0.3

p

a R

2 3 4 5 6
0

5

10

15

20

25

/ {2,3,4,5,6}L R

/ 0.2a R

increasing /a R

ax
ia

l c
on

ta
ct

 fo
rc

e 
FR

/

L/R
 

 

 

(a)

2 3 4 5 6
0

2

4

6

8(b)

/ {2,3,4,5,6}L R

/ 0.3a R

L/R

increasing /a R

m
em

br
an

e 
te

ns
io

n 
R2 /

 

  

Fig. S4: (a) Normalized effective axial contact force FR/κ and (b) normalized effective membrane
tension σR2/κ as functions of L/R at zero pressure difference. The vesicle morphologies at a/R =
0.2 and 0.3 and selected lengths are shown in insets in (a) and (b), respectively.

Fig. S5: (a) Normalized effective membrane tension σR2/κ as a function of the normalized length
L/R of a straight nanorod with two widened tips. Here a and at represent the radii of the rod wall
and tip, respectively. (b) The vesicle morphologies from MD simulations for ∆p = 100κ/R3.

The mechanical response of the vesicle to the encapsulated nanorod at zero pressure difference
is significantly different from that at ∆p = 200κ/R3 and 400κ/R3. Compared to the nonmonotonic
feature of the force and tension curves at ∆p = 200κ/R3 and 400κ/R3 (Figs. 2a, S2, and S3), both
curves of F and σ at ∆p = 0 are smooth and monotonically increasing functions of L/R, as shown
in Fig. S4. No membrane protrusion and discontinuous shape transformation of the vesicle are
observed. As L increases, the vesicle maintains a tube-like shape but gradually becomes thinner.
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An intriguing feature of the force curve in the case of a/R = 0.3 is that F increases at a much
higher rate beyond a certain value of L/R around 5.5. This feature is due to the formation of contact
between the rod wall and vesicle membrane.

In the case of an encapsulated straight nanorod with two widened tips, the membrane tension
first increases and gradually rises to a maximum. Upon the vesicle tubulation and the initiation of
contact between the vesicle membrane and rod wall, the membrane tension decreases linearly with
respect to L/R (Fig. S5a). More vesicle morphologies from MD simulations in addition to these in
the inset in Fig. 5b could be found in Fig. S5b.

Fig. S6: (a) Normalized axial contact force FR/κ as a function of the normalized nanorod length
L/R. (b) Vesicle morphologies induced by cone-shaped nanorods from MD simulations.
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Fig. S7: Normalized effective membrane tension σR2/κ as a function of the normalized length L/R
of encapsulated cone-shaped nanorods at ∆p = 400κ/R3. Here a1 and a2 represent radii of the
top and bottom ends of the nanorods.
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The axial contact force curves and vesicle morphologies for encapsulated cone-shaped nanorods
from MD simulations are shown in Fig. S6. No lemon-shaped vesicles with mirror symmetry are ob-
served in MD simulations, and the tubular membrane protrusions always occur from the vesicle pole
in contact with the smaller nanorod end. We did not observe the force peak associated with vesicle
tubulation in MD simulations as it is located in a narrow range of L/R as predicted theoretically in
Fig. 6. As the length of the nanorod or the tubular membrane protrusion increases, the radius of
the protrusion increases. Consequently, the axial contact force increases as L/R increases. MD
simulations and theoretical analysis predict similar vesicle morphologies.

In the case of cone-shaped nanorods, the membrane tension gradually increases to a peak,
and then decreases smoothly as L/R further increases (Fig. S7). Compared to a straight nanorod
of uniform radius, the tension peaks in the case of cone-shaped nanorods occur at smaller L/R,
and the rates of post-peak decreasing are lower.

In the case of a screwdriver-shaped nanorod, both F and σ exhibit two local maxima (Fig. S8).
The first local maximum is due to the formation of a tubular membrane protrusion enclosing the
upper portion of the nanorod, and the second local maximum is due to the growing protrusion
enclosing the lower portion of the nanorod. MD simulations in Fig. S9a show similar trends of the
axial contact force as our theoretical results in Fig. S8a. In the case of a2/R = 0.3, two force
peaks are observed and the first force peak arises from the initial vesicle tubulation enclosing the
upper portion of the nanorod (Fig. S9b). As the membrane protrusion comes to contact with the
lower portion of the nanorod, the second force peak emerges, and after that the axial contact force
decreases with L, as predicted by our theoretical analysis. Selected morphologies of the vesicles
encapsulating the screwdriver-shaped nanorods are shown in Fig. S9b.
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Fig. S8: Normalized effective axial contact force FR/κ (a) and normalized effective membrane
tension σR2/κ (b) as functions of the normalized length L/R of screwdriver-shaped nanorods.
Inset in (b) plots the vesicle morphologies induced by encapsulated screwdriver-shaped nanorods
of different radial sizes a2/R = 0.1,0.2, and 0.3 and lengths L/R = 2,3,4,5, and 6. Here a1 and
a2 represent radii of the top and bottom parts of the screwdriver-shaped nanorods, and we take
a1/R = 0.1 and L1/R = 1. Inset in (b) plots the vesicle configurations at a1/R = 0.1 and different
values of L/R.
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Fig. S9: (a) Normalized axial contact force FR/κ as a function of the normalized length L/R of
screwdriver-shaped nanorods at ∆p = 100κ/R3 and a1/R = 0.1, and (b) selected vesicle mor-
phologies from MD simulations.
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