Supplementary Information for: On-Surface Structural and Electronic Properties of Spontaneously Formed Tb₂Pc₃ Single Molecule Magnets

Jack Hellerstedt^{*,1,2}, Aleš Cahlík^{*,1,2}, Martin Švec^{1,2}, Bruno de la Torre^{1,2}, María Moro-Lagares^{1,2}, Taras Chutora^{1,2}, Barbora Papoušková², Giorgio Zoppellaro², Pingo Mutombo¹, Mario Ruben^{3,4}, Radek Zbořil², and Pavel Jelinek^{†,1,2}

¹Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
²Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelû 27, 78371 Olomouc, Czech Republic
³Karlsruhe Institute of Technology, Institute of Nanotechnology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
⁴Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 67034 Strasbourg, France
^{*}These authors contributed equally to this work
[†]email: jelinekp@fzu.cz

July 13, 2018

Substrate Registration and Unit Cell

Figure S1: nc-AFM image showing atomic registration of Ag(111), $TbPc_2$ (dark red/blue), and Tb_2Pc_3 (light red/blue). Overlay of Ag(111) lattice, and top ligand orientations for each species.

Figure S2: Molecular unit cell: a) configuration of bottom Pc on the Ag(111). b) second layer of Pc added in dark red/blue. c) third layer added in light red/blue. Ag(111) lattice directions are labeled in numbers at bottom, molecule unit cell is indicated with green arrows.

Other Species

Figure S3: a) STM topography image of TbPc₂, Tb₂Pc₃ and occupied Pc molecules. Residual Pc molecules are observed at the edge of a TbPc₂-Tb₂Pc₃ island, and on the bare terrace (marked with white arrows). $V_{bias} = 0.2 \text{ mV}$, I = 20 pA. b) AFM high resolution image with CO-functionalized tip of a single Pc molecule with occupied center that could be TbPc. Compare to Katoh et. al.¹

KPFM Parabolas

Figure S4: a) Overview STM topography ($V_{bias} = 100 \text{ mV}$, I = 10 pA) with the Kelvin probe parabola locations indicated with colored crosses. b) At the marked locations, $\Delta f(V_{bias})$ is recorded at identical heights above the sample. Vertical lines indicate the V_{CPD} parabolic cusp for each curve.

nc-AFM comparison with simulation

Figure S5: a) High resolution image of isolated Tb_2Pc_3 molecule. b) Simulated nc-AFM image of Tb_2Pc_3 molecule.

Data Analysis Methods

The analysis and preparation of these figures was aided by the use of the scipy 2 and matplotlib 3 python libraries as well as WSxM. 4

Chemical Analysis

Experimental Methods (MALDI MS)

The Synapt G2-S mass spectrometer (Water, Manchester, UK) equipped with MALDI interface was used for recording the spectral data. The Nd:YAG laser (355 nm) had a pulse rate of 1 kHz at energy level 400 (corresponding to cca 80 μ J); the sample plate voltage was 0 V. The spectra were obtained in positive/negative mode in the range of 50-2000 Da, scan time 1 s, inter-scan delay 0.015 s. The instrument was calibrated before the experiments using red phosphorus in acetone as a reference.

Sample/ matrix preparation and deposition

10 mg of the matrix (2,5- dihydroxybenzoic acid) was dissolved in 1 mL of the solution methanol/ CH_2Cl_2 (1:1, v/v). Saturated solutions of the samples in $CHCl_3$ were subsequently prepared. 2 μ L of the matrix was deposited on the MALDI spot and allowed to dry completely before a second 2 μ L deposit. Once dry, the plate was inserted in the MALDI source and the prepared spots were analysed.

Figure S6: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of neat TbPc₂ (solvents CHCl₃/MeOH) before UHV deposition, acquired in positive mode. Note the presence of half-decker Tb ring (TbPc, $C_{32}H_{16}N_{18}Tb$) together with double-decker Tb complex (TbPc₂, [($C_{32}H_{16}N_{18})_2Tb$]).

Figure S7: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of neat TbPc₂ (solvents CHCl₃/MeOH) acquired in negative mode, with the dominating double-decker TbPc₂ signal [$C_{32}H_{16}N_{18}$ Tb].

Figure S8: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of neat TbPc₂ (solvents $CHCl_3/MeOH$) (lower spectrum) before UHV deposition and its calculated isotopic distribution pattern (upper spectrum, isotope model).

A [TbPc]⁺ m/z+ = 671.1

B $[Pc]C_2H_5 \times H_2O m/z + = 600.7$ C_2H_5 , amylene, CH_2CI_2 contains 40-150 ppm amylene as stabilizer

Figure S9: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the recovered material from the evaporator crucible, following UHV annealing and surface deposition of the TbPc₂ material recorded in positive mode. The presence of the triple decker (Tb₂Pc₃), double-decker (TbPc₂) and half-decker (TbPc) signals are highlighted. Annealing time t = 60 min, annealing temperature, T = 850 K.

Figure S10: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the recovered material from the evaporator crucible, following UHV annealing and surface deposition of the TbPc₂ material recorded in positive mode in the mass/ z^+ region >1000. Annealing time t = 60 min, annealing temperature, T = 850 K.

Figure S11: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the recovered material from the evaporator crucible, following UHV annealing and surface deposition showing the presence of the triple-decker Tb₂Pc₃ (lower panel) with its calculated isotopic distribution pattern (upper panel). Annealing time t = 60 min, annealing temperature, T = 850 K.

Figure S12: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the TbPc₂ material (solvents CHCl₃/MeOH) recovered after annealing T = 700 K in the UHV chamber, acquired in positive mode. Annealing time t = 10 min.

Figure S13: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the TbPc₂ material (solvents CHCl₃/MeOH) recovered after annealing T = 675 K in the UHV chamber, acquired in positive mode. Annealing time t = 10 min.

terbium complex, 375C, calibrated Red P +

Figure S14: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the TbPc₂ material (solvents CHCl₃/MeOH) recovered after annealing T = 650 K in the UHV chamber, acquired in positive mode. Annealing time t = 10 min.

Figure S15: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the recovered material from the STM crucible, following UHV annealing and surface deposition of the TbPc₂ material recorded in positive mode. Annealing time t = 30 min, annealing temperature T = 850 K.

Figure S16: MALDI-MS mass spectroscopy analysis using 2,5-dihydroxybenzoic acid (DBH) matrix in MeOH of the recovered material from the STM crucible, following UHV annealing and surface deposition of the TbPc₂ material recorded in positive mode. Annealing time t = 30 min, annealing temperature T = 850 K.

References

- 1. Hill, S.; Datta, S.; Liu, J.; Inglis, R.; Milios, C. J.; Feng, P. L.; Henderson, J. J.; del Barco, E.; Brechin, E. K.; Hendrickson, D. N. *Dalton Transactions* **2010**, *39*, 4693.
- 2. van der Walt, S.; Colbert, S. C.; Varoquaux, G. Computing in Science & Engineering 2011, 13, 22-30.
- 3. Hunter, J. D. Computing in Science & Engineering 2007, 9, 90-95.
- 4. Horcas, I.; Fernndez, R.; Gmez-Rodrguez, J. M.; Colchero, J.; Gmez-Herrero, J.; Baro, A. M. Review of Scientific Instruments 2007, 78, 013705.