Electronic Supplementary Information

High-Energy Flexible Quasi-Solid-State Lithium-Ion Capacitors Enabled by Freestanding rGO-Encapsulated Fe₃O₄ Nanocube anode and Holey rGO Film Cathode

Tian Liang, Huanwen Wang*, Dongming Xu, Ke Liao, Rui Wang, Beibei He, Yansheng Gong, Chunjie Yan*

Engineering Research Center of Nano-Geomaterials, Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Lu Mo Road 388, Wuhan 430074, PR China

Corresponding authors*:

wanghw@cug.edu.cn (H. W. Wang); chjyan2005@126.com (C. J. Yan)

Figure S1 SEM image (a, b) and the photograph (c) of the $GO@Fe_2O_3$ film.

Figure S2 SEM image (a, b) of the GO film.

Figure S3 SEM image (a, b) of the rGO film.

Figure S4 SEM image (a, b) of the rGO@Fe₃O₄ film, which was prepared by annealing $GO@Fe_2O_3$ film at 900 °C in Ar atmosphere.

Figure S5 SEM images (a, b) of the rGO@Fe $_3O_4$ samples, which were prepared by annealing

GO@haematite at 900 °C in Ar.

Figure S6 SEM image (a, b) of the pure Fe_3O_4 nanocubes, which was obtained by annealing Fe_2O_3 nanocubes at 650 °C.

Figure S7 Nitrogen adsorption isotherms of (a) rGO@Fe₃O₄ and (b) holey rGO.

Figure S8 Charge-discharge curves (a) at 1 A g⁻¹, cycling performance (b) at 1 A g⁻¹, and rate capability (c) of holey rGO film.

Hybrid System	Power Density	Energy Density	Ref
(anode//cathode)	(W kg ⁻¹)	(Wh kg ⁻¹)	IXC1.
CC@NiCo ₂ O ₄ //Graphene –	568.2	60.9	- 1
	11360	37.56	
CNT@V ₂ O ₅ //AC –	210	40	_ 2
	6300	6.9	
Graphene@Fe ₂ O ₃ //Graphene —	200	121	_ 3
	18000	60.1	
Graphene@Fe ₃ O ₄ //Graphene —	5	204	. 4
	1000	122	
Graphene@TiO ₂ //Graphene —	303	72	. 5
	2000	10	
PF-Graphene//Graphene –	141	148.3	. 6
	7800	71.5	
Graphene–Li ₄ Ti ₅ O ₁₂ //Graphene –	45	95	- 7
	3000	32	
C-LiTi ₂ (PO ₄) ₃ // AC –	-	14	8
	180	-	
Nb ₂ O ₅ -C//AC –	-	74	_ 9
	18510	15	
TiP ₂ O ₇ //AC –	46	13	. 10
	371	-	
MnNCN//AC –	-	103	. 11
	8533	-	
Li ₃ VO ₄ -CNFs//Graphene —	173	110	_ 12
	3870	-	
rGO@Fe ₃ O ₄ //rGO —	250	148.75	- Our work
	25000	70.5	

 Table S1 Electrochemical performances of various LICs in references.

References

- 1 Z. Gao, W. Yang, J. Wang, N. Song and X. Li, *Nano Energy*, 2015, **13**, 306-317.
- 2 Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn and Y. Lu, Adv Mater, 2011, 23, 791-795.
- 3 E. Kim, H. Kim, B. J. Park, Y. H. Han, J. H. Park, J. Cho, S. S. Lee and J. G. Son, *Small*, 2018, 14, e1704209.
- 4 F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, Energy Environ Sci, 2013, 6, 1623.
- 5 F. Wang, C. Wang, Y. Zhao, Z. Liu, Z. Chang, L. Fu, Y. Zhu, Y. Wu and D. Zhao, *Small*, 2016, **12**, 6207-6213.
- 6 T. Zhang, F. Zhang, L. Zhang, Y. Lu, Y. Zhang, X. Yang, Y. Ma and Y. Huang, *Carbon*, 2015, **92**, 106-118.
- 7 K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. Wu, Y. Lu, Y. Huang and Y. Chen, Nano Research, 2013, 6, 581-592.
- 8 V. Aravindan, W. Chuiling, M. V. Reddy, G. V. Rao, B. V. Chowdari and S. Madhavi, *Phys Chem Chem Phys*, 2012, **14**, 5808-5814.
- 9 K. H. Lim E, Jo C, et al., ACS Nano, 2014, **8**, 8968-8978.
- 10 V. Aravindan, M. V. Reddy, S. Madhavi, S. G. Mhaisalkar, G. V. Subba Rao and B. V. R. Chowdari, *J Power Sources*, 2011, **196**, 8850-8854.
- 11 C. Liu, C. Zhang, H. Fu, X. Nan and G. Cao, *Adv Energy Mater*, 2017, **7**, 1601127.
- 12 F. Wang, Z. Liu, X. Yuan, J. Mo, C. Li, L. Fu, Y. Zhu, X. Wu and Y. Wu, J Mater Chem A, 2017, 5, 14922-14929.