## **Electronic Supplementary Information**

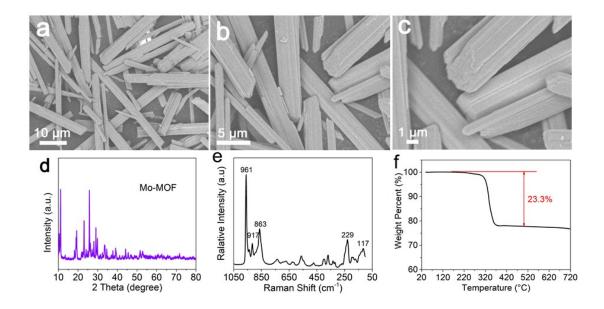
## Performance-improved Li-O<sub>2</sub> Battery by Tailoring Phases of Mo<sub>x</sub>C Porous Nanorods as An Efficient Cathode

Hong Yu,\*†<sup>a</sup> Khang Ngoc Dinh,†<sup>c</sup> Yuanmiao Sun,<sup>c</sup> Haosen Fan,\*<sup>b</sup> Yonghui Wang,<sup>a</sup>

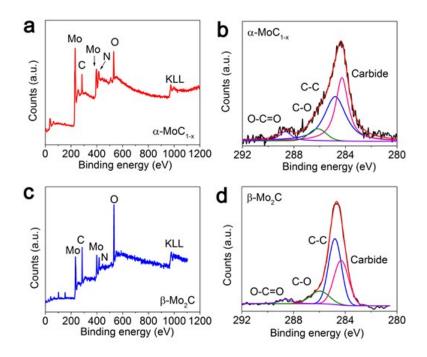
Yao Jing,<sup>a</sup> Shuzhou Li,<sup>c</sup> Madhavi Srinivasan,<sup>c</sup> Qingyu Yan\*<sup>c</sup>

a State Key Laboratory of Solidification Processing, Center of Advanced Lubrication

and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.


b School of Chemistry and Chemical Engineering, Guangzhou University,

Guangzhou 510006, China.


c School of Materials Science and Engineering and Energy Research Institute @ NTU

(ERI@N), Interdisciplinary Graduate School, Nanyang Technological University,

Block N4.1 Nanyang Avenue, 639798, Singapore.



**Fig. S1** (a-c) FESEM images, (d) XRD patterns, (e) Raman spectra and (f) thermogravimetric analysis (TGA) of Mo-based MOF.



**Fig. S2** XPS survey spectrum of (a)  $\alpha$ -MoC<sub>1-x</sub> and (c)  $\beta$ -Mo<sub>2</sub>C. XPS high resolution scans of C 1s electrons of (b)  $\alpha$ -MoC<sub>1-x</sub> and (d)  $\beta$ -Mo<sub>2</sub>C.

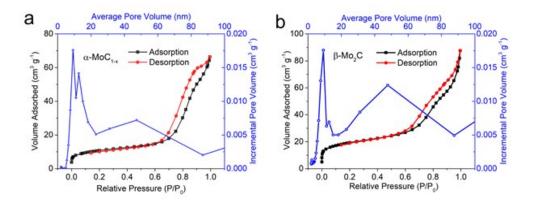



Fig. S3 Nitrogen physisorption (adsorption/desorption) isotherms and BJH adsorption pore distribution curves of (a)  $\alpha$ -MoC<sub>1-x</sub> and (b)  $\beta$ -Mo<sub>2</sub>C.

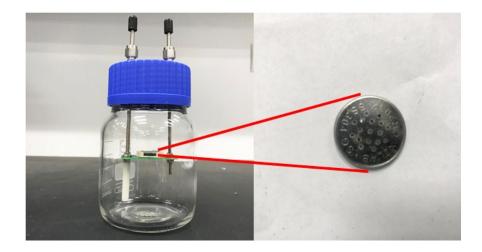



Fig. S4 Set up of  $Li-O_2$  batteries. The batteries are assembled with coin-type of cell.

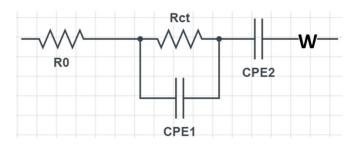



Fig. S5 The equivalent electrical circuit for impedance analysis.

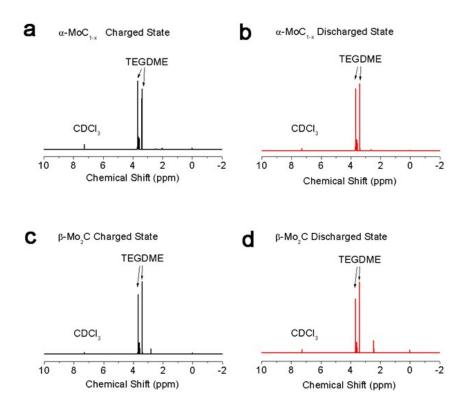



Fig. S6 <sup>1</sup>H NMR spectra of  $\alpha$ -MoC<sub>1-x</sub> charged state (a) and (b) discharged state. <sup>1</sup>H NMR spectra of  $\beta$ -Mo<sub>2</sub>C charged state (a) and (b) discharged state.

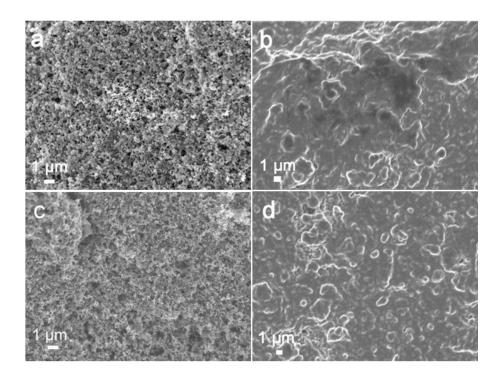



Fig. S7 FESEM images of pristine and discharged  $\alpha$ -MoC<sub>1-x</sub> (a and b) and $\beta$ -Mo<sub>2</sub>C (c and d).

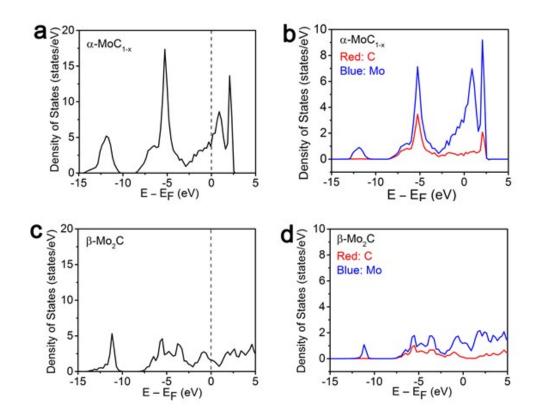



Fig. S8 The total and projected density of states (TDOS and PDOS) of bulk crystal  $\alpha$ -MoC<sub>1-x</sub> (a and b) and  $\beta$ -Mo<sub>2</sub>C (c and d).

| Table                                             | <b>S1</b> | Comparison | of | cyclibility | of | $\alpha$ -MoC <sub>1-x</sub> | with | other | well-performed |
|---------------------------------------------------|-----------|------------|----|-------------|----|------------------------------|------|-------|----------------|
| electrocatalysts for Li-O <sub>2</sub> batteries. |           |            |    |             |    |                              |      |       |                |

|                                                              | Electrolyte | Cut-off<br>capacity     | Number of cycles before | voltage at                            | References                                      |
|--------------------------------------------------------------|-------------|-------------------------|-------------------------|---------------------------------------|-------------------------------------------------|
|                                                              |             | (mA h g <sup>-1</sup> ) | dead                    | 500 mA h g <sup>-1</sup><br>(V)       |                                                 |
| TiC-C                                                        |             | 500                     | 80 cycles               |                                       | Chem. Commun., 2016, 52, 2713                   |
| Carbon black                                                 |             | 500                     | 23                      | > 4.5                                 | Chem. Commun., 2016, 52, 2713                   |
| TiC                                                          | TEGDME      | 500                     | 25                      | Die at $\sim$ 530 mAh g <sup>-1</sup> | Nat. Mater., 2013, 12, 1050                     |
| TiC                                                          | DMSO        | 350                     | 100                     | N.A                                   | Nat. Mater., 2013, 12, 1050                     |
| NiCo <sub>2</sub> O <sub>4</sub>                             | TEGDME      | 500                     | 50                      | ~ 4.5                                 | J. Mater. Chem.<br>A, 2014, 2,<br>12053         |
| Graphitic<br>Porous<br>Carbon–Co <sub>3</sub> O <sub>4</sub> | TEGDME      | 500                     | 50                      | 4.4                                   | ACS Appl. Mater.<br>Interfaces 2016, 8,<br>2796 |
| Au–Pt core–<br>shell                                         | TEGDME      | 1000                    | 20                      | 4.1                                   | J. Mater. Chem.<br>A, 2014, 2,<br>10676         |
| RuO <sub>2</sub> @RGO                                        | TEGDME      | 1000                    | 50                      | 4.0                                   | J. Mater. Chem.<br>A, 2016, 4, 2403–<br>2407    |
| p-CNT/Co <sub>3</sub> O <sub>4</sub>                         | TEGDME      | 500                     | 115                     | > 4.5                                 | J. Mater. Chem.<br>A, 2017, 5, 25501            |
| a-MoC <sub>1-x</sub>                                         |             | 1000                    | 100                     | 4.2                                   | This work                                       |

**Table S2** Fitted values for equivalent circuit elements by simulation ofelectrochemical impedance spectroscopy in Fig. S4.

| Cathada aatalyat     | R <sub>0</sub> |               | R <sub>ct</sub> |               |  |
|----------------------|----------------|---------------|-----------------|---------------|--|
| Cathode catalyst     | Initial        | After cycling | Initial         | After cycling |  |
| α-MoC <sub>1-x</sub> | 30.96          | 41.26         | 395.8           | 399.4         |  |
| β-Mo <sub>2</sub> C  | 31.11          | 44.2          | 627.9           | 734.0         |  |