Supplementary materials

Monodisperse Cu/Cu₂O@C Core-Shell Nanocomposite Supported on rGO Layers as An Efficient Catalyst Derived from Cu-Based MOFs/GO Structure

Ke YANG,*^{a+} Yu YAN, ^{a+} Haiyang WANG, ^a Zhixuan SUN, ^a Wen CHEN, ^a Hongtao KANG, ^a Yi HAN, ^a Wenquan ZAHNG, ^a Xiaohua SUN, ^a and Zhenxing LI*^a

a State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum-Beijing, Beijing, 102249, P. R. China.

† These authors contributed equally.

Figure 1s The XRD pattern of Cu-BTC and Cu-BTC derivative.

Figure 2s TEM images of (a) GO sheets, (b) Cu-BTC/GO and Cu-BTC derivative under $N_{\rm 2}$ atmosphere.

Figure 3s SEM image of virgin Cu-BTC crystal.

Figure 4s TEM (a), HAADF (b) and EDS mapping (c-d) images of Cu/Cu2O@C-rGO composite

Figure 5s N₂ adsorption-desorption isotherm of Cu-BTC, Cu-BTC/GO and Cu-BTC derivative.

Figure 6s The three sequential steps of 4-NP to 4-AP.

Figure 7s The XRD pattern of $Cu/Cu_2O@C$ -rGO composite that exposed to the air for more than a month.

Figure 8s The XRD pattern of Cu/Cu₂O@C-rGO composite before (red) and after (black) 5 cycles catalytic reaction test.

Figure 9s TEM (a and b) images of Cu/Cu₂O@C-rGO composite after five cycling catalytic reaction test.

Figure 10s The TG curve of Cu/Cu₂O@C-rGO composite after five cycling catalytic reaction test.