1

Supplementary Information for

Nature-inspired Entwined Coiled Carbon Mechanical Metamaterials: Molecular Dynamics Simulations

Jianyang Wu,^{1, 2,*} Qiao Shi,¹ Zhisen Zhang,¹ Hong-Hui Wu³, Chao Wang,⁴ Fulong Ning,⁵ Senbo Xiao,² Jianying He ², and Zhiliang Zhang ^{2,*}

¹Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research

Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University,

Xiamen 361005, PR China

²NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491,

Norway

³Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States

⁴Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, PR China

⁵Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, PR China

^{*}Corresponding Email: jianyang@xmu.edu.cn, zhiliang.zhang@ntnu.no

Figure S1 Variations in potential energies of both SHCNCs and ECNCs with MD relaxation time. (a) - (c) Evolution of REBO-, LJ- and Torsion potential energies (E_{REBO} , E_{LJ} and E_{Torsion}) of singlehelix. (d) - (f) Development of REBO-, LJ- and Torsion potential energies (E_{REBO} , E_{LJ} and E_{Torsion}) of double-helix. (g) - (i) Changes in REBO-, LJ- and Torsion potential energies (E_{REBO} , E_{LJ} and E_{Torsion}) of triple-helix.

Figure S2 Perspective view of one representative bundle composed of 4-identical carbon nanohelixes

with index of (2,1,1,2)/(os = 1).

Figure S3 Variation in REBO, LJ and TORSION potential energies with MD relaxation time for

entwined-free (2,1,1,2)/(os = 1) nanohelix bundle.

Figure S4 Mechanical tensile stress-strain curves of isolated single-helix, isolated entwined doubleand triple-helixes, and entwined-free nanohelix bundle.

5

Strain ε = 1.640

Figure S5 Snapshot of nanohelix bundle at strain of 1.640.