Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Layer dependent magnetoresistance of vertical MoS₂ magnetic tunnel junctions

Muhammad Farooq Khan^{1,2}, Hakseong Kim², Ghazanfar Nazir¹, Suyong Jung² and Jonghwa Eom¹

¹ Department of Physics & Astronomy and Graphene Research Institute, Sejong University,

Seoul 05006, Korea

²Center for Quantum Measurement Science, Korea Research Institute of Standards and Science,

Daejeon 34113, Korea

Figure S1 Images by AFM of (a) bi-, (c) tri-, and (e) multilayer MoS_2 flakes with their corresponding height profiles in (b), (d) and (f) respectively.

The measurements of junction resistance as a function of temperature

The product of junction resistance (R) and junction area (A) is defined as (R x A = RA). The *RA-T* of mono-, bi-, tri-, and multilayer MoS_2 flakes were investigated at different temperatures.

Figure S2 Product of resistance (*R*) and junction area (*A*) measured as a function of temperature for (a) mono-, (b) bi-, (c) tri-, and (d) multilayer MoS_2 vertical magnetic tunnel junctions. All these measurements were accomplished at $I = 10 \mu A$.

The current-voltage measurement of multilayer MoS₂ at different temperature

Figure S3 (a) Temperature dependent current-voltage characteristics of multilayer MoS₂ spin valve junction. The second derivative of *I-V* curves of multilayer MoS₂ device at (b) 300 K and (c) 30 K.

Layer dependent magnetoresistance loops of MoS₂

Figure S4 Set-2 of devices. **(a)** Magnetoresistance measurements traces of mono- to multilayer MoS_2 spin valve junctions as a function of external magnetic field at room temperature. **(b)** The values of MR ratios of mono-, bi-, tri-, and multilayer MoS_2 vertical magnetic tunnel junctions. The current is fixed at $I = 10 \mu A$.