## **Electronic Supplementary Information**

## **Bio-inspired Self-Propelled Diatom Micromotor by Catalytic Decomposition of H<sub>2</sub>O<sub>2</sub> Under Low Fuel Concentration**

Atanu Panda,<sup>a</sup> Ankireddy Seshadri Reddy,<sup>b</sup> Sada Venkateswarlu,<sup>a</sup> Minyoung Yoon\*<sup>a</sup> <sup>a</sup>Department of Nanochemistry, Gachon University, Sungnam 13120, Republic of Korea <sup>b</sup>Department of Biochemical Engineering, Gachon University, Sungnam 13120, Republic of Korea.

\*Corresponding author. Tel.: +82-31-750-8721.

E-mail address: myyoon@gachon.ac.kr



Fig. S1. SEM images of (a, b) pure diatom; (c, d)  $H_2O_2@$  diatom; and (e, f) EDTA-  $H_2O_2@$  diatom.

|         | 1.0     | @ @     |   |    | Spectrum 1 |
|---------|---------|---------|---|----|------------|
| 0 2     | 4       | 6       | 8 | 10 | 12         |
| Element | Weight% | Atomic% |   |    | b          |
| СК      | 24.52   | 37.94   |   |    |            |
| ок      | 27.38   | 31.81   |   |    |            |
| AI K    | 3.05    | 2.10    |   |    |            |
| Si K    | 39.43   | 26.09   |   |    |            |
| КК      | 1.29    | 0.61    |   |    |            |
| Fe K    | 4.34    | 1.45    |   |    |            |
| Totals  | 100.00  |         |   |    |            |

Fig. S2. (a) EDX of diatom and (b) elemental composition of diatom.



Fig. S3. Elemental mapping of diatom.



Fig. S4. BET surface area and pore-size distribution analysis of diatom.



Fig. S5. High-resolution XPS spectrum of O 1s (i) pure diatom, (ii)  $H_2O_2@$ diatom and (iii) EDTA- $H_2O_2@$ diatom.



Fig. S6. Micro-motor speed with respect to fuel concentration  $(H_2O_2)$ .

## **DPPH** free radical scavenging assay

Free radical-induced diatoms self-propulsion activity in the presence of 0.8 w/v%  $H_2O_2$  was examined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Based on the standard protocol, bare DPPH, DPPH in the presence of diatoms, and DPPH in the presence of diatoms with  $H_2O_2$  have been recorded using UV-vis spectrophotometer. In a typical run, 500 µL of 50 µM DPPH was mixed with approximately 1 mg of diatoms in the presence or absence of 50 µL of 0.8 w/v%  $H_2O_2$  in a vial. These vials were wrapped with the aluminum foil and incubated for 30 min at room temperature. The free radical generation has been measured using a UV-vis spectrophotometer after incubation (Fig. S7). All readings were recorded at ambient temperatures.



**Fig. S7** Free radical scavenging activity of (i) DPPH, (ii) DPPH with diatoms, (iii) DPPH with diatoms in the presence of  $H_2O_2$  and (inset photo) neat DPPH on left and DPPH with diatoms in the presence of  $H_2O_2$  (right).

| Time<br>(min) | Volume of<br>KMnO <sub>4</sub> used<br>(Blank H <sub>2</sub> O <sub>2</sub> in<br>mL) | Volume of<br>KMnO <sub>4</sub> used<br>(Diatom and<br>$H_2O_2$ in mL) | Volume of<br>remaining<br>KMnO <sub>4</sub> | % of<br>Consumption of<br>H <sub>2</sub> O <sub>2</sub> | % of<br>Consumption of<br>H <sub>2</sub> O <sub>2</sub> after<br>addition of<br>EDTA |
|---------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
| 0             | 37                                                                                    | 37                                                                    | 13                                          | 0                                                       | 0                                                                                    |
| 1             | 37                                                                                    | 33                                                                    | 17                                          | 11                                                      | 1.5                                                                                  |
| 3             | 37                                                                                    | 24                                                                    | 26                                          | 35                                                      | 4.5                                                                                  |
| 5             | 36.5                                                                                  | 19                                                                    | 31                                          | 49                                                      | 7.2                                                                                  |
| 10            | 36                                                                                    | 15                                                                    | 35                                          | 60                                                      | 8                                                                                    |
| 15            | 36                                                                                    | 15                                                                    | 35                                          | 60                                                      | 8                                                                                    |

**Table. S1** Normality of  $KMnO_4 = 0.001N$ , titrated against Sodium oxalate to get the normality of  $KMnO_4$