SUPPLEMENTARY INFORMATION

Exploiting the signatures of nanoplasmon-exciton coupling on proton sensitive insulator-semiconductor devices for drug discovery applications

Nikhil Bhalla*⁺ and Pedro Estrela*

Centre for Biosensors, Bioelectronics and Biodevices and Department of Electronic & Electrical Engineering, University of Bath BA2 7AY United Kingdom; Email: nikhil.bhalla@bath.edu,

P.Estrela@bath.ac.uk

Wafer characteristics

B. Energy Despersive X-ray spectroscopy

EDX analysis showing nitrogen, oxygen and silicon contents of wafer #2

EDX analysis showing nitrogen, oxygen and silicon contents of wafer #3

EDX analysis showing nitrogen, oxygen and silicon contents of wafer #4

1

0-

C. XRD Characterization

D. pH chacarterization of all wafers