Supplementary Information

Coaxial-nanostructured MnFe₂O₄ nanoparticles on polydopamine-

coated MWCNT for anode materials in rechargeable batteries

Hyeongwoo Kim^{a,b}, Jong-Won Lee^c, Dongjin Byun^b, Wonchang Choi^{a,d,*}

^a Centre for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-

gil, Seongbuk-gu, Seoul 02792, Republic of Korea

^b Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu,

Seoul 02841, Republic of Korea

^c Department of Materials Science and Engineering, Chosun University, 309 Pilmun-daero, Dong-gu,

Gwangju 61452, Republic of Korea

^d Division of Energy & Environment Technology, KIST School, Korea University of Science and

Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

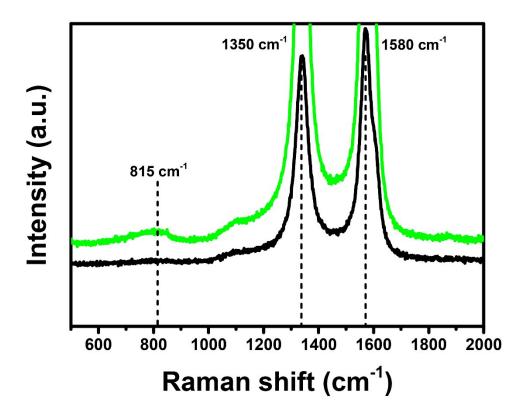


Fig. S1 Raman spectra of pristine MWCNT (black line) and PDA-coated MWCNT (green line).

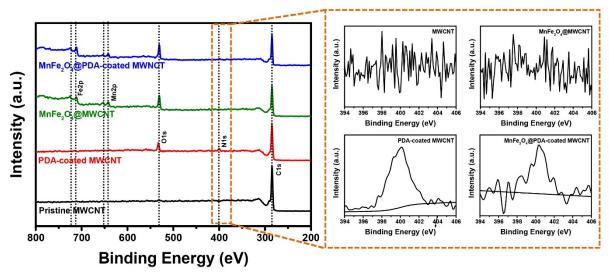


Fig. S2 XPS full scan and N1s narrow scan spectra for the as-prepared samples.

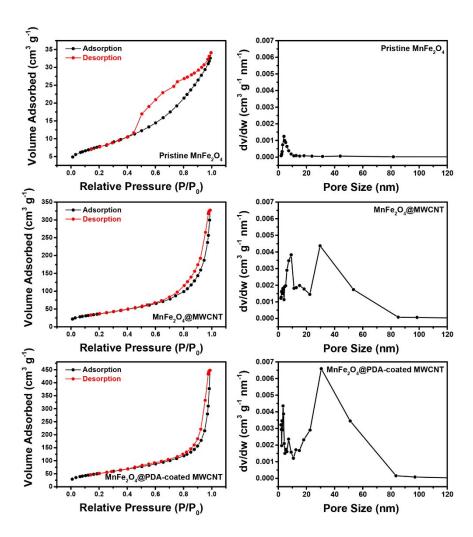
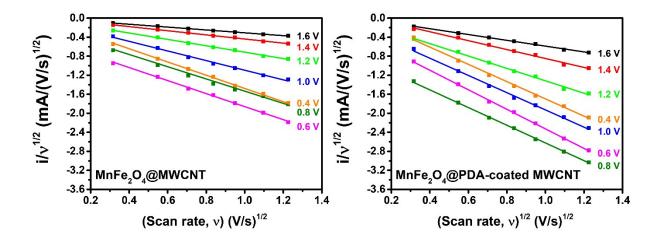



Fig. S3 N_2 adsorption-desorption isotherm and pore size distribution of the as-prepared samples.

Sample	Surface area (m ² g ⁻¹)
Pristine MnFe ₂ O ₄	28.14
MnFe ₂ O ₄ @MWCNT	131.9
$MnFe_2O_4@PDA$ -coated MWCNT.	185.5

Fig. S4 i/v^{1/2} vs. v^{1/2} plots for the MnFe₂O₄@MWCNT and MnFe₂O₄@PDA-coated MWCNT using the cathodic current in the potential range of 1.6 ~ 0.4 V (vs. Li⁺/Li) at various scan rates (0.1 ~ 1.5 mV s⁻¹).