## **Supporting Information**

## Fluorescence enhancement from single gold nanostars: towards ultra-bright emission in the first and second near-infrared biological windows

Ioannis G. Theodorou<sup>1</sup>, Qianfan Jiang<sup>1</sup>, Lukas Malms<sup>1</sup>, Xiangyu Xie<sup>1</sup>, R. Charles Coombes<sup>2</sup>, Eric O. Aboagye<sup>2</sup>, Alexandra E. Porter<sup>1</sup>, Mary P. Ryan<sup>1</sup>, Fang Xie<sup>1,\*</sup>

<sup>1</sup>Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

<sup>2</sup>Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom

\*E-mail: f.xie@imperial.ac.uk

 Table S1. Morphological characteristics of S-AuNSs and L-AuNSs obtained through seed-mediated synthesis.

|        | Number    | Size (nm)  | Core Size    | Spike length | Spike width | Spike Aspect |
|--------|-----------|------------|--------------|--------------|-------------|--------------|
|        | of spikes |            | (nm)         | (nm)         | (nm)        | Ratio        |
| S-AuNS | 8-16      | 47 ± 17    | 27 ± 7       | $10 \pm 6$   | $7 \pm 3$   | 1.4          |
| L-AuNS | 14-26     | $214\pm90$ | $132 \pm 34$ | $60 \pm 52$  | $13 \pm 12$ | 4.6          |

## **3D FDTD modelling:**

In our FDTD modelling for gold nanostars, a Drude-Lorentz model was used to define the permittivity of gold [1]:

$$\varepsilon(\omega) = 1 - \frac{f_1 \omega_p^2}{\omega(\omega - i\Gamma_1)} + \sum_{j=2}^n \frac{f_j \omega_p^2}{(\omega_{o,j}^2 - \omega^2) + i\omega\Gamma_j}$$

Where  $\omega_p$  is the plasma frequency,  $f_j$  is each oscillator's strength,  $\Gamma_j$  is the reciprocal of each oscillator's lifetime and  $\omega_o$  is the resonant frequency of each oscillator. In our case, adopted values are listed below.

 Table S2. Parameters used to define the permittivity of gold

| Au ( $\omega_p = 9.03 \ eV$ ) |       |       |       |       |       |       |  |  |  |  |
|-------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| j                             | 1     | 2     | 3     | 4     | 5     | 6     |  |  |  |  |
| f                             | 0.760 | 0.024 | 0.010 | 0.071 | 0.601 | 4.384 |  |  |  |  |
| Γ (eV)                        | 0.053 | 0.241 | 0.345 | 0.870 | 2.494 | 2.214 |  |  |  |  |
| $\omega_o(eV)$                | 0.000 | 0.415 | 0.830 | 2.969 | 4.304 | 13.32 |  |  |  |  |

[1] Aleksandar D. Rakić, Aleksandra B. Djurišić, Jovan M. Elazar, and Marian L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998)