Supplementary information

Au nanocrystal superlattices: nanocrystallinity, vicinal surfaces, and growth processes

Detlef Smilgies^a, Ruipeng Li, and Marie-Paule Pileni^{b*}

a) Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States.

b) CEA/IRAMIS, CEA Saclay, 91191, Gif-sur-Yvette, France

Corresponding Author *mppileni@orange.fr

Figure S1: TEM images of Au_{single} (a) Au $_{poly}$ (b) and Co(ϵ) (c) NCS. Insets corresponding HRTEM images

Figure S2. Au_{poly} (red), Au_{single} (blue) and $Co(\epsilon)$ (grey) nanoparticle size distributions (a) and their corresponding TEM pictures (b).

Figure S3. Elemental maps corresponding to $L_{\alpha 1}$ of Au(green) and $K_{\alpha 1}$ of Co (ϵ) NCs (red). (a) Self-assembly of Au_{single} and Co(ϵ) NCs. Note the phase separation of Au_{single} and Co supracrystals with well defined Au shape supracrystals. (b) Self-assembly of Au_{poly} and Co(ϵ) NCs. Note that Au_{poly} and Co(ϵ) NCs form smaller grains superlattices.

Figure S4. Various vicinal surfaces of Au_{single} supracrystals in presence of $Co(\epsilon)$.

Figure S6. GISAXS patterns (a) and their corresponding radially integrated intensity profiles (b) of the initial colloidal solution drop for $Au_{single}/Co(\epsilon)$, $Au_{poly}/Co(\epsilon)$, Au_{single} and Au_{poly} , from the top to bottom.

Figure S7. Evolution of GIWAXS patterns of Au_{single} NCs at 20s (a), 50s (b), 100s (c) and 140s (d). Evolution of corresponding WAXS profiles (e).

 $\label{eq:second} \mbox{Figure S8} \mbox{ GISAXS patterns after final evaporation of } Au_{single} \ (a), \ Au_{poly} \ (b), \ Au_{single} / \ Co(\epsilon) \ (c) \ and \ Au_{poly} / \ Co(\epsilon) \ (d).$

				Hexane
	Toluene atmosphere	atmosph		
				ere
	Without Co		With Co	With Co
Au _{single}	a _{compressed_fcc}	d _{pp} =3.3nm	$a_{fcc}=12.3$ nm	$a_{fcc}=12.4$ nm
	=12.3nm c _{compressed_fcc} =11.2nm		d _{pp} =3.3nm	d _{pp} =3.4nm
Au _{poly}	$a_{hcp}=8.2$ nm $c_{hcp}=13.5$ nm	d _{pp} =2.6nm	a_{hcp} =8.2nm	$a_{hcp}=8.2$ nm
			$c_{hcp}=13.4$	$c_{hcp}=13.2$
			nm	nm
			d _{pp} =2.6nm	$d_{pp} = 2.5 nm$

Table S1. Au SC parameters differing by their nanocrystallinity, single domain (Au_{single}) and polycrystals (Au_{poly}) , deduced from GISAXS patterns in the various experimental conditions. Let admit an error of 0.1nm no influence of Co(ϵ) NCs.

Sample	D _{SAXS}	σ_{SAXS}	D _{TEM}	σ_{TEM}
Au _{single}	5.54	0.40	5.4	0.4
Au _{poly}	5.56	0.40	5.6	0.4
$Au_{single} + Co$	5.84	0.44		
	5.20	0.54		
$Au_{poly} + Co$	5.30	0.54		

Table S2. NC diameter determined by SAXS (D_{SAXS}) and TEM (D_{TEM}) with their corresponding standard deviation (σ).