Supporting information

Self-scrolling MoS₂ Metallic Wires

Zegao Wang,^{‡ab} Hong-Hui Wu,^{‡c} Qiang Li,^{bd} Flemming Besenbacher,^b Xiao Cheng Zeng^{*ce} and Mingdong Dong^{*b}

^a Department of Materials Science, Sichuan University, Chengdu 610064, China.

^b Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark

^c Department of Chemistry, University of Nebraska-Lincoln, NE 68588 Lincoln, United States.

^d Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University,

Jinan, 250100, China

^e Department of Chemical & Biomolecular Engineering and Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, NE 68588 Lincoln, United States.

‡ These authors contributed equally.

Email: dong@inano.au.dk, xzeng1@unl.edu

Figure S1. The histogram of MoS_2 nanoscroll direction reference to its edge. The MoS_2 nanoscrolls are formed from as-grown MoS_2 . The larger interaction between MoS_2 film and substrate makes its break up during scrolling.

Figure S2. The detailed snapshots of MoS_2 sheet self-scrolling at time intervals from 0 to 200 ps.

Figure S3. The detailed snapshots of a relatively shorter MoS_2 sheet self-scrolling at time intervals from 0 to 87.5 ps (see Supporting Vedio S2).

Figure S4. Other HRTEM image of MoS₂ nanoscroll.

Figure S5. TEM image of MoS_2 nanoscroll with large interlayer distance. The scale bar is 10 nm.

Figure S6. The optimized multi-layer (a) 1 layer, (b) 2 layer, (c) 3 layer MoS_2 sheet and the multiwalled nanotubes (d) (12, 12), (e) (6, 6)-(12, 12), (f) (6, 6)-(12, 12)-(18, 18).

Figure S7. The transfer property of MoS_2 nanoscroll transistor under different source-drain voltage.

Figure S8. The transfer property of thick MoS_2 sheet with thickness of about 50 nm. Compared to the thick MoS_2 sheet, the lower on/off ratio in MoS_2 nanoscrolls device indicates that the difference transport behavior is originated from its unique structure (continually scrolling structure) rather than the increased thickness.

Figure S9. a) The output property of MoS_2 sheet transistor. b) The temperature dependent transfer curve of MoS_2 sheet transistor.

Figure S10. a) and b) The linear fit of $ln^{\frac{3}{100}}(I_{DS}/T^{\frac{3}{2}}) \sim 1000/T$ on MoS₂ film and nanoscroll transistor, respectively.