Engineered Nanoceria cytoprotection In Vivo: mitigation of Reactive Oxygen Species and Double-stranded DNA breakage due to Radiation Exposure

Soumen Das ^{‡†1}, Craig J. Neal ^{‡1}, Julian Ortiz¹, Sudipta Seal^{1,2}*

¹Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA

²College of Medicine, University of Central Florida, Orlando, FL 32816, USA

[†]these authors contributed equally

*Corresponding author: Sudipta Seal, <u>sudipta.seal@ucf.edu</u> University of Central Florida, Engineering 1, Rm 207 P.O. Box 162455; Orlando, FL 32816 Present Addresses † Aviana Molecular Therapeutic 3251 Progress Drive, Orlando, FL 32826

Supplemental Figure 1. X-ray Photoelectron spectroscopy. Cerium oxide nanoparticles were analyzed for binding energy at values particular for Ce³⁺ and for Ce⁴⁺. Calculating these values in ratio allows the determination of Ce³⁺:Ce⁴⁺. This formulation of CNPs shows a very high portion of Ce³⁺, suggestive of cyto-protective radical oxygen scavenging activity.

*Corresponding author: Sudipta Seal, <u>sudipta.seal@ucf.edu</u> University of Central Florida, Engineering 1, Rm 207 P.O. Box 162455; Orlando, FL 32816 Present Addresses † Aviana Molecular Therapeutic 3251 Progress Drive, Orlando, FL 32826