Litchi-peel-like hierarchical hollow copper-ceria microspheres: aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation

Wenge Li, Yanjie Hu,* Hao Jiang, Nan Jiang, Wei Bi and Chunzhong Li* Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.

Figure S1 Schematic setup for aerosol spray pyrolysis.

Figure S2 Enlarged SEM image of 20CuCe-H sample.

Figure S3 (a) BF-HAADF TEM image, (b) TEM image and (c) HRTEM image of 20CuCe-H, and (d) selected SAED image of the single microsphere in (a).

Figure S4 EXD elemental mapping of 20CuCe-H sample.

Figure S5 BE-STEM image of 20CuCe-L sample.

Figure S6 HRTEM image of 20CuCe-L sample.

Figure S7 Selected area EDX elementary mapping of 20CuCe-L sample.

Figure S8 TEM images of (a, b) 10CuCe-H, (c, d) 10CuCe-L, (e, f) 30CuCe-H, (g, h) 30CuCe-L.

Figure S9 HRTEM images of (a) 10CuCe-H and (b) 10CuCe-L.

Figure S10 EDX elementary mapping of 10CuCe-H sample.

Figure S11 EDX elementary mapping of 10CuCe-L sample.

Figure S12 Magnifying TEM images of (a) 30CuCe-H and (b) 30CuCe-L.

Figure S13 HRTEM images of (a) 30CuCe-H and (b) 30CuCe-L.

Figure S14 Enlarged XRD profiles of the as-prepared copper-ceria samples.

Figure S15 Cu-LMM spectra of the as-prepared copper-ceria samples.

Figure S16 Area-normalized specific reaction rates of 20CuCe-H and 20CuCe-L.

Figure S17 CO conversion as a function of temperature over 20CuCe-H in continuous three cycles.

Samples	T50 (°C)	T100 (°C)	Reference
20CuCe-L	83	120	This work
CuO(20)/CeO ₂ -500	101	151	Ref ¹
CuO/Ce _x Cu _{1-x} O _{2-δ}	95	135	Ref ²
Cu ²⁺ doped CeO ₂ (P4)	172	223	Ref ³
Cu _{0.1} Ce _{0.9} O ₂	234	275	Ref ⁴
Cu _{0.1} Ce _{0.9} O ₂	149	196	Ref ⁵
Cu _{0.29} Ce _{0.71} O _{2-y}	144	203	Ref ⁶
$Cu_{0.05}Ce_{0.95}O_{2-\delta}$	94	200	Ref ⁷

Table S1 Catalytic activity of copper-ceria samples in references and our work.

- A.-P. Jia, S.-Y. Jiang, J.-Q. Lu and M.-F. Luo, *J. Phys. Chem. C*, 2010, **114**, 21605-21610.
- A.-P. Jia, G.-S. Hu, L. Meng, Y.-L. Xie, J.-Q. Lu and M.-F. Luo, *J. Catal.* 2012, 289, 199-209.
- W. Liu, X. F. Liu, L. J. Feng, J. X. Guo, A. R. Xie, S. P. Wang, J. C. Zhang and Y. Z. Yang, *Nanoscale*, 2014, 6, 10693-10700.
- F. Yang, J. J. Wei, W. Liu, J. X. Guo and Y. Z. Yang, *J. Mater. Chem. A*, 2014,
 2, 5662-5667.
- J. S. Elias, K. A. Stoerzinger, W. T. Hong, M. Risch, L. Giordano, A. N. Mansour and Y. Shao-Horn, ACS Catal., 2017, 7, 6843-6857.
- C. D. Curran, L. Lu, C. J. Kiely and S. McIntosh, J. Mater. Chem. A, 2018, 6, 244-255.

 T. Cwele, N. Mahadevaiah, S. Singh and H. B. Friedrich, *Appl. Catal. B: Environ.*, 2016, **182**, 1-14.