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Computational details

The geometry optimizations of the HTM/MAPbI; complexes were performed by
the CP2K/QUICKSTEP program!-3 combined with a hybrid Gaussian and plane wave
basis set. The generalized-gradient approximation(GGA)* of Perdew-Burke-Ernzerhof
(PBE)’ exchange correlation functional was employed together with norm-conserving
Goedecker-Teter-Hutter (GTH)® pseudopotentials, and when forces were less than 45
meV A-! (default value), the structures were considered as relaxed. Based on the
optimized HTM/MAPDbI; geometries, single-point DFT calculations were carried out
with Gaussian 09 package to gain the electronic and energetic properties of HTM
adsorbed systems at the theoretical level of B3LYP/6-31G*, coupled with the
LANL2DZ potentials.” Herein, the (MAPbI;)g4 cluster was obtained by appropriately
cutting a tetragonal phase slab with the (001) surface exposed,® which was believed to
favor the hole injection from MAPbI; to HTMs. Meanwhile, the parallel adsorption
configuration’ was reported to be energetic favorable for HTMs with big n-conjugated

cores, and thus this adsorption model was employed for the new designed NTT-4TPA.

References

1. J. Hutter, M. Iannuzzi, F. Schiffmann and J. VandeVondele, WIRES Comput. Mol. Sci., 2014,
4, 15-25.

2. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comput.

Phys. Commun., 2005, 167, 103-128.

3. W. L. Ding, X. L. Peng, Z. Z. Sun and Z. S. Li, Nanoscale, 2017, 9, 16806-16816.

4, J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

5. K. Burke, J. P. Perdew and M. Ernzerhof, Phys. Rev. Lett., 1997, 80, 891.

6. C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B: Condens. Matter, 1998, 58, 3641-
3662.

7. E. Mosconi, J. H. Yum, F. Kessler, C. J. G. Garcia, C. Zuccaccia, A. Cinti, M. K. Nazeeruddin,

2



M. Gritzel and F. De Angelis, J. Am. Chem. Soc., 2012, 134, 19438-19453.

J. Yin, D. Cortecchia, A. Krishna, S. Chen, N. Mathews, A. C. Grimsdale and C. Soci, J. Phys.
Chem. Lett., 2015, 6, 1396-1402.

Y. C. Kim, T. Y. Yang, N. J. Jeon, J. Im, S. Jang, T. J. Shin, H. W. Shin, S. Kim, E. Lee, S.
Kim, J. H. Noh, S. I. Seok and J. Seo, Energy Environ. Sci., 2017, 10, 2109-2116.



m B3LYP-R
e PBE33
5.1 ¢ &
]
[&]
5.2 4 : . i
= | S
D 53 .
5 i =
Q @
uCJ -5.4 4 .
554 o
| ®
5.6 - -
| NTT-4TPA
5.7 T - 1

T T T T T T | T
Tt T2 T3 T4 T5 T6 T7 T8 T9  spiro-OMeTAD

Fig. S1 Calculated HOMO levels of investigated molecules with the functional
B3LYP and PBE33, and the B3LYP-R represents the data revised by a semi-rational

formula.
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Fig. S2 Total electronic energy evolutions of the investigated dimers (T1~T6) as a

function of simulation time.
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Fig. S3 Total electronic energy evolutions of the investigated dimers (T7~T9) as a

function of simulation time.
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Fig. S4 Conjectural synthetic pathways for predicted molecules.



S . 1)TiCly

Br Br )nBuli ~ Tms__S._Br 1)n-BuLi s s 2)zn

X =V TS {7 U
2) TMSCI 2)DMC  TMSTY ZTIMS 799,

~80% 1 75% 2

hv

I,(3.0eq) O
92%

Fig. SS§ Experimental synthetic pathways for the NTT core.
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a) Top-view (b) Side-view
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Fig. S6 Unrelaxed structure of the (MAPbI;)e4 cluster with (001) surface exposed.



(a) Top-view (b) Side-view

Fig. S7 Optimized geometry of the Spiro-OMeTAD/(MAPDI;)ss complex.
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(b) Side-view

Fig. S8 Optimized geometry of the NTT-4TPA/(MAPbDI;)es complex.
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