Supporting Information

Highly Active Bifunctional Oxygen Electrocatalysts Derived from Nickel-

or Cobalt-Phytic Acid Xerogel for Zinc-Air Batteries

Shuai Wang,^{a‡} Gyutae Nam,^{b‡} Ping Li,^{a‡} Haeseong Jang,^b Jia Wang,^a Min Gyu Kim,^c Zexing Wu,^{a*} Xien Liu^{a*} and Jaephil Cho^{b*}

^a-State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China, Email: splswzx@qust.edu.cn; liuxien@qust.edu.cn

^{b.}Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea, Email: jpcho@unist.ac.kr ^{c.}Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784, Korea

List of Contents

Calculation of electron transfer number (n) and % HO₂⁻ for oxygen reduction reaction

Figure S1. N₂ adsorption and desorption isotherms of Ni (PO_xN_{3-x}) $_2$ /NPC and Ni (PO_xN_{3-x}) $_2$ /NPC.

Figure S2. The pore size distribution of Ni (PO_xN_{3-x}) $_2$ /NPC a) and Co (PO_xN_{3-x}) $_2$ /NPC

Figure S3. XPS survey spectrum of NPC a) and corresponding high resolution N 1s b), P 2p c), O 1s d).

Figure S4. LSVs of catalysts before and after NH₃ treatment.

Figure S5. LSVs of Ni (PO_xN_{3-x}) $_2$ /NPC and Co (PO_xN_{3-x}) $_2$ /NPC with different pyrolysis treatment and metal contents.

Figure S6. The cyclic voltammetry curves of Ni (PO_xN_{3-x}) ₂/NPC and Co (PO_xN_{3-x}) ₂/NPC for ORR at scanning rate of 5 mV/s in a 0.1 M KOH solution.

Figure S7. Snapshots for Ni $(PO_xN_{3-x})_2/NPC$ and Co $(PO_xN_{3-x})_2/NPC$.

Figure S8. LSVs of Ni (PO_xN_{3-x}) ₂/NPC at rotating speeds of 400, 800, 1200, 1600 rpm a) and the K-L plots at different potentials b).

Figure S9. LSVs of Ni (PO_xN_{3-x}) $_2$ /NPC and Co (PO_xN_{3-x}) $_2$ /NPC with different pyrolysis treatment and metal contents for OER.

Figure S10. Nyquist plots of electrochemical impedance spectra (EIS) of Ni (PO_xN_{3-x}) ₂/NPC and Co

 $(PO_xN_{3-x})_2/NPC$ in 1M KOH.

Figure S11. The SEM of Zn electrode. a) Before zinc air battery testing. b) After zinc air battery testing.

Table S1. Comparison of ORR performance of Ni (PO_xN_{3-x}) ₂/NPC and Co (PO_xN_{3-x}) ₂/NPC with recently reported catalysts in 0.1 M KOH solution

Table S2. The performance of rechargeable zinc-air batteries of Ni (PO_xN_{3-x}) $_2$ /NPC, Co (PO_xN_{3-x}) $_2$ /NPC and other recently reported catalysts in 6 M KOH

Calculation of Electron Transfer Number (n) and % HO₂⁻ for Oxygen Reduction Reaction

On the basis of rotating disk electrode (RDE) measurements, the electron transfer numbers (n) per O_2 involved in ORR were calculated from the slopes of the Koutecky-Levich plots according to the following equations¹:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_l} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_k}$$
(1)

where *j* is the measured current density, j_k and j_l are the kinetic and diffusion-limiting current densities, ω is the rotating rate of electrode (rpm). *B* is determined from the slope of the Koutecky-Levich plots according to the Levich equation.

$$B = 0.2nFC_{0_2} D_{0_2}^{2/3} v^{-1/6}$$
 (2)

where n is electron transfer number per oxygen molecule, *F* is Faraday constant (96485 C mol⁻¹), C_{02} is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol cm⁻³), v is the kinetic viscosity of electrolyte (0.01 cm² S⁻¹). D_{02} is the diffusion coefficient of O₂ in 0.1 M KOH and 0.1 M HClO₄ (1.9 × 10⁻⁵ cm² S⁻¹).

Hydrogen peroxide yields and the electron transfer number (n) were calculated by the following equations:

$$\% (HO_{2}^{-}) = 200 \times \frac{\frac{I_{r}}{N}}{I_{d} + \frac{I_{r}}{N}}$$
(3)
$$n = 4 \times \frac{I_{d}}{I_{d} + \frac{I_{r}}{N}}$$
(4)

Where I_d is disk current, I_r is ring current, the collection efficiency (*N*) was determined to be 0.40 by using 10 mM K₃[Fe(CN)₆].

Figure S1. N₂ adsorption and desorption isotherms of Ni (PO_xN_{3-x}) $_2$ /NPC a) and Co (PO_xN_{3-x}) $_2$ /NPC b).

Figure S2. The pore size distribution of Ni (PO_xN_{3-x}) $_2$ /NPC a) and Co (PO_xN_{3-x}) $_2$ /NPC

Figure S3. XPS survey spectrum of NPC a) and corresponding high resolution N 1s b), P 2p c) and O 1s d).

Figure S4. LSVs of catalysts before and after NH₃ treatment.

Figure S5. LSVs of Ni (PO_xN_{3-x}) $_2$ /NPC and Co (PO_xN_{3-x}) $_2$ /NPC with different pyrolysis treatment and metal contents.

Figure S6. The cyclic voltammetry curves of Ni (PO_xN_{3-x}) ₂/NPC and Co (PO_xN_{3-x}) ₂/NPC for ORR at scanning rate of 5 mV/s in a 0.1 M KOH solution.

Figure S7. Snapshots for Ni (PO_xN_{3-x}) $_2$ /NPC a) and Co (PO_xN_{3-x}) $_2$ /NPC b).

Figure S8. ORR activity in 0.1 M KOH electrolyte solution: a) LSVs of Ni (PO_xN_{3-x}) $_2$ /NPC at rotating speeds of 400, 800, 1200, 1600 rpm. b) K-L plots at different potentials. c) Chronoamperometric curves of Co (PO_xN_{3-x}) $_2$ /NPC and Pt/C at 0.6 V versus RHE in O₂-saturated 0.1 M KOH electrolyte. d) The stability test for Co (PO_xN_{3-x}) $_2$ /NPC and Pt/C with the adding of 8.5mL of Methanol into 70 mL of 0.1 M KOH.

Figure S9. LSVs of Ni (PO_xN_{3-x}) $_2$ /NPC and Co (PO_xN_{3-x}) $_2$ /NPC with different pyrolysis treatment and metal contents for OER.

Figure S10. Nyquist plots of electrochemical impedance spectra (EIS) of Ni (PO_xN_{3-x}) ₂/NPC and Co (PO_xN_{3-x}) ₂/NPC in 1M KOH.

Figure S11. The SEM of Zn electrode. a) Before zinc air battery testing. b) After zinc air battery testing.

Table S1. Comparison of ORR performance of Ni (PO_xN_{3-x}) ₂/NPC and Co (PO_xN_{3-x}) ₂/NPC with recently reported catalysts in 0.1 M KOH solution

Catalysts	Catalyst Loading (mg cm ⁻²)	E _{1/2} (V vs. RHE)	Onset potentials (V vs. RHE)	Ref.	
Ni (PO _x N _{3-x}) ₂ /NPC	0.23	0.83	1.02	This work	
S-GNS/NiCo ₂ S ₄	0.42	0.88	/	2	
Co/CoO _x	0.50	0.76	0.95	3	
Co-N,B-CSs	0.10	0.83	0.89	4	
Co-Nx/C NRA	/	0.877	/	5	
Co@C-800	0.14	0.82	0.92	6	
Co ₃ O ₄ /N-rGO	0.128	0.79	0.90	7	
NC-Co ₃ O ₄ -90	1.2	0.87	0.91	8	
NCNT/CoO-NiO-NiCo	0.21	0.83	1.0	9	
NiFe-LDH/Co,N-CNF	0.12	0.79	0.893	10	
Ni₃Fe/N-C sheets	0.13	/	0.90	11	
CoP NCs	0.2	0.858	0.92	12	
C-MOF-C2-900	0.2	0.817	/ 13		
CoS NWs@NSC-2	0.2113	0.84	0.93	0.93 14	
NiO/CoN PINWs	0.2	0.68	0.89 15		
CoOx NPs/BNG	/	0.805	0.95	16	

Catalysts	Catalyst loading (mg cm ⁻²)	Specific capacity (mAh g ⁻¹)	Energy density (Wh Kg _{zn} -1)	Ref.	
Ni (PO _x N _{3-x}) ₂ /NPC	0.53	735@20	894@20 Th		
Co (PO _x N _{3-x}) ₂ /NPC	0.53	700@20	836@20	work 836@20	
Co-Nx/C NRA	/	/	853@20	5	
NGM-Co	0.50	750@20	840@20	17	
CoO/N-CNT+NiFe LDH	1.00	~570@10	>700@10	18	
NCNT/CoO-NiO-NiCo	0.53	545@20	615@20	9	
Ni₃Fe/N-C sheets	/	528@10	634@10	11	
C-MOF-C2-900	0.50	741@10	/	13	
NiO/CoN PINWs	/	648@10	836@10	15	
ZnCo ₂ O ₄ /N-CNT	2.00	428.47@10	595.57@10	19	
CuS/NiS ₂	2.00	775@5	695@25	20	
N-GCNT/FeCo-3	2.00	872.2@100	1015.2@5	21	

Table S2. The performance of rechargeable zinc-air batteries of Ni (PO_xN_{3-x}) ₂/NPC, Co (PO_xN_{3-x}) ₂/NPC and other recently reported catalysts in 6 M KOH

References

- 1 R. Zhou, Y. Zheng, M. Jaroniec and S.-Z. Qiao, *ACS Catal.*, 2016, **6**, 4720-4728.
- 2 W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen and A. Yu, *Adv. Funct. Mater.*, 2018, **28**, 1706675.
- 3 B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen, T. Thundat, J. Li and J.-L. Luo, *Nano Energy*, 2017, **32**, 247-254.
- 4 Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu and S. Mu, *ACS Nano*, 2018, **12**, 1894-1901.
- 5 I. S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li, J. Zhang, H. Tang, H. Zhang and S. Mu, *Adv. Funct. Mater.*, 2018, **28**, 1704638.
- 6 B. Chen, G. Ma, Y. Zhu and Y. Xia, *Sci. Rep.*, 2017, **7**, 5266.
- 7 Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, Adv. Mater., 2018, 30, 1703657.
- C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S. J. Pennycook and J.
 Wang, *Adv. Mater.*, 2017, **29**, 1704117.
- 9 X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, *Angew. Chem. Int. Ed. Engl.*, 2015, **54**, 9654-9658.
- 10 Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Energy Mater.*, 2017, **7**, 1700467.
- 11 G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, **7**, 1601172.
- 12 H. Li, Q. Li, P. Wen, T. B. Williams, S. Adhikari, C. Dun, C. Lu, D. Itanze, L. Jiang, D. L. Carroll, G. L. Donati, P. M. Lundin, Y. Qiu and S. M. Geyer, *Adv. Mater.*, 2018, **30**, 1705796.
- 13 M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, *Adv. Mater.*, 2018, **30**, 1705431.
- 14 C. Han, Q. Li, D. Wang, Q. Lu, Z. Xing and X. Yang, *Small*, 2018, **14**, 1703642.
- 15 J. Yin, Y. Li, F. Lv, Q. Fan, Y. Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, *ACS Nano*, 2017, **11**, 2275-2283.
- 16 Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu and Y. Xie, *Angew. Chem. Int. Ed. Engl.*, 2017, **56**, 7121-7125.
- 17 C. Tang, B. Wang, H. F. Wang and Q. Zhang, *Adv. Mater.*, 2017, **29**, 1703185.
- Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang and H. Dai, *Nat. Commun.*, 2013, 4, 1805.
- 19 Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma and Y. Z. Su, *Adv. Mater.*, 2016, **28**, 3777-3784.
- L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, *Adv. Funct. Mater.*, 2017, 27, 1703779.
- 21 C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang and T.-Y. Ma, Adv. Energy

Mater., 2017, 7, 1602420.