## Electronic Supplementary Information for

## Ultra-low Power Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> based Ferroelectric Tunnel Junction Synapses for

## Hardware Neural Network Applications

Lin Chen<sup>a</sup>\*, Tian-Yu Wang<sup>a</sup>, Ya-Wei Dai<sup>a</sup>, Ming-Yang Cha<sup>a</sup>, Hao Zhu<sup>a</sup>, Qing-Qing Sun<sup>a</sup>\*, Shi-Jin

Ding<sup>a</sup>, Peng Zhou<sup>a</sup>, Leon Chua<sup>b</sup>, and David Wei Zhang<sup>a</sup>

<sup>a</sup>State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China

<sup>b</sup>Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

CA 94720, USA

\* E-mail : <u>linchen@fudan.edu.cn;</u> <u>qqsun@fudan.edu.cn;</u>

The fabrication process is schematically demonstrated in **Fig. S1** in supporting information. Firstly, multiple SiO<sub>2</sub>(30 nm)/Pt(50 nm)/Ti stack layers were deposited onto the cleaned SiO<sub>2</sub>/Si substrate. 5 nm thickness Titanium is using as an adhesion layer. Pattern and dry etching were applied to form a vertical pillar structure. 9 nm HZO film was then deposited on the pillar sidewall by ALD method. Next, top and bottom contact were etched. 60 nm TiN vertical electrodes were deposited by PVD methods followed by a lift-off process. Finally, samples were annealed in N<sub>2</sub> atmosphere at 450 °C for 30s.



**Fig. S1 The fabrication process of HZO-based FTJ array.** (a) Multiple SiO<sub>2</sub>(30 nm)/Pt(50 nm)/Ti stack layers were deposited onto the cleaned SiO<sub>2</sub>/Si substrate. 5 nm thickness Titanium is using as an adhesion layer. (b) Vertical pillar structure formation by pattern and dry etch method. (c) ALD 9 nm HZO thin film on the pillar sidewall. (d) Top contact formation. (e) Bottom contact formation. (f) PVD 60 nm TiN vertical electrodes followed by a lift-off process, then samples were annealed in N<sub>2</sub> atmosphere at 450°C for 30s.

Ferroelectric (FE) HZO-based FTJ exhibits great advantages in nonvolatile memory application. The resistance switching characteristics are derived from electron tunneling across FE HZO layer, which is crucially distinct from oxide-based RRAM. Electrical measurements are performed without any electrical forming process; the conductance ratio is lower than its counterpart, and energy consumption is much lower than that of RRAM under the same device dimension. **Fig. S2** illustrates the energy bandgap diagram of FE-HZO based FTJ under bipolar operation. The electricfield-induced polarization reversal in FE-HZO layer change the conductance of the FTJ.



**Fig. S2 Energy bandgap diagram of FE-HZO based FTJ under bipolar operation.** (a) 6V pulse is applied on the TiN TE to program the FTJ to an ON state. (b) 0.1V read pulse to read the FTJ's state. (c) -6V erase pulse is applied to switch the FTJ to OFF state. (d) 0.1V read pulse to read the FTJ's state.

To estimate the neural network's generalization ability, computer simulation of pattern classification is implemented (shown in the main text). **Fig. S3**(a) shows the convergence of network output for the training set, all the 4 training processes from different initial states according with Gaussian distribution with different values of standard deviation (1  $\mu$ S, 1.25  $\mu$ S, 1.5  $\mu$ S and 1.75  $\mu$ S) exhibit perfect convergence results. Figure S3b shows the detailed synaptic weights distribution in the training evolution. Perfect classification is obtained after training around 20 epochs.



Fig. S3 Simulated implementation of pattern classification and recognition. (a) The convergence of network output for the training set. The corresponding standard deviations of the initial synaptic weights are 1  $\mu$ S, 1.25  $\mu$ S, 1.5  $\mu$ S and 1.75  $\mu$ S. (b) Histogram of synaptic weights at the initial state (with a deviation of 1.5  $\mu$ S), measured after training 10 epochs, 20 epochs, 30 epochs and 40 epochs. Perfect classification is achieved after training around 20 epochs.

| Years,<br>Publication                                                      | Electronic Synapse<br>system                              | Switching<br>mechanism   | Synaptic<br>function | Energy/power<br>consumption | 3D<br>integration | Neuromorphic<br>learning |              |                   |
|----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|----------------------|-----------------------------|-------------------|--------------------------|--------------|-------------------|
|                                                                            |                                                           |                          |                      |                             |                   | Hardwar<br>e             | Softwar<br>e | - Accuracy (%)    |
| This work                                                                  | TiN/FE-HZO/Pt                                             | FE tunneling             | Yes                  | 1.8 pJ/spike                | Yes               | Yes                      | Yes          | 96%(simulation)   |
| 2015, <sup>[1]</sup> Nature                                                | Ti/Al <sub>2</sub> O <sub>3</sub> /TiO <sub>2-x</sub> /Pt | V <sub>0</sub> -filament | -                    | -                           | Yes(crossbar      | Yes                      | Yes          | 74%(experiment)   |
| 2015, <sup>[2]</sup> Adv.<br>Mater.                                        | Pt/WO <sub>3</sub> /Pt                                    | V <sub>0</sub> -filament | Yes                  | -                           | )<br>No           | No                       | No           | -                 |
| 2015, <sup>[3]</sup> Nat. Mater.                                           | $Ag/M_oO_x/M_OS_2/Ag$                                     | V <sub>0</sub> -filament | Yes                  | 10 nW                       | No                | No                       | No           | -                 |
| 2015, <sup>[4]</sup> Nano lett.                                            | Pd/Ta <sub>2</sub> O <sub>5-x</sub> /TaO <sub>y</sub> /Pd | V <sub>0</sub> -filament | Yes                  | -                           | No                | No                       | No           | -                 |
| 2016, <sup>[5]</sup><br>Nanotechnology                                     | Ta/TaO <sub>2</sub> /TiO <sub>2</sub> /Ti                 | V <sub>0</sub> -filament | Yes                  | 18 pJ/spike                 | Yes               | No                       | Yes          | 90%(simulation)   |
| 2010, <sup>[6]</sup> Nano lett.                                            | Ag:α-Si memristor                                         | -                        | Yes                  | 1.37 pJ/spike               | Yes(crossbar<br>) | No                       | No           | -                 |
| 2016, <sup>[7]</sup> <i>IEEE</i><br><i>Electron Device</i><br><i>Lett.</i> | TiN/HfO <sub>2</sub> /Pt                                  | V <sub>0</sub> -filament | -                    | -                           | Yes(crossbar<br>) | Yes                      | No           | -                 |
| 2017, <sup>[8]</sup> Nat. Mater.                                           | SiO <sub>x</sub> N <sub>y</sub> :Ag device                | Ag-filament              | Yes                  | -                           | No                | No                       | No           | -                 |
| 2014, <sup>[9]</sup> Nano<br>Research                                      | Bi <sub>2</sub> S <sub>3</sub> -NNN/FTO                   | Schottky emission        | Yes                  | 150 nJ/spike                | No                | Yes                      | No           | -                 |
| 2015, <sup>[10]</sup> IEEE<br>Trans. Electron<br>Devices                   | 1T1R GST-PCM                                              | Phase change             | -                    | -                           | Yes(crossbar<br>) | No                       | Yes          | 82.9%(experiment) |
| 2011, <sup>[11]</sup> Nano lett.                                           | TiN/GST/TiN                                               | Phase change             | Yes                  | 50 pJ/spike                 | No                | No                       | No           | -                 |
| 2016, <sup>[12]</sup> Nat.<br>Nanotech.                                    | GST-PCM                                                   | Phase change             | Yes                  | 5 pJ/spike                  | Yes(crossbar<br>) | No                       | No           | -                 |
| 2014, <sup>[13]</sup> <i>Appl. Phys. Lett.</i>                             | Co/BTO/LSMO                                               | FE tunneling             | Yes                  | -                           | No                | No                       | No           | -                 |

## References

[1] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov, *Nature* **2015**, 521, 61.

[2] Z. H. Tan, R. Yang, K. Terabe, X. B. Yin, X. D. Zhang, X. Guo, *Advanced Materials*2015, 28.

[3] A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhanen, M. J. Bailey, *Nature materials* **2015**, 14, 199.

[4] S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, W. D. Lu, *Nano letters* 2015, 15, 2203.

[5] I. T. Wang, C. C. Chang, L. W. Chiu, T. Chou, T. H. Hou, *Nanotechnology* **2016**, 27.

[6] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu, *Nano letters* 2010, 10, 1297.

[7] L. Gao, P. Y. Chen, S. Yu, *IEEE Electron Device Letters* 2016, 37, 870.

[8] Z. Wang, S. Joshi, S. E. Savel'Ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, *Nature materials* 2016.

[9] Y. Tian, C. Guo, S. Guo, T. Yu, Q. Liu, *Nano Research* 2014, 7, 953.

[10] G. W. Burr, R. M. Shelby, S. Sidler, C. D. Nolfo, *IEEE Transactions on Electron Devices* 2015, 62, 1.

[11] D. Kuzum, S. Yu, H. S. Wong, *Nanotechnology* **2013**, 24, 382001.

[12] T. Tuma, A. Pantazi, M. L. Gallo, A. Sebastian, E. Eleftheriou, *Nature Nanotechnology* **2016**, 11, 693.

[13] Z. Wang, W. Zhao, W. Kang, Y. Zhang, *Applied Physics Letters* **2014**, 104, 053505.