Supporting Information

Metal-Organic Frameworks Derived Leaf-like CoSNC

Nanocomposites for Supercapacitor Electrodes

Yu Wang, ^a Qinjie Du, ^a Haimin Zhao, ^b Shanshan Hou, ^a Yu Shen, ^a Hongfeng Li, ^a Xueying Kong, ^a Wei Sun, ^b Bo Zhang, ^a Sheng Li, ^a Fengwei Huo^{*a} and Weina Zhang^{*a}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China. Email: iamwnzhang@njtech.edu.cn E-mail: iamfwhuo@njtech.edu.cn.

^{b.}Zhejiang Tianneng Energy Technology Co., Ltd, 18 Baoqiao Road, Huaxi Industrial Function Zone, Huzhou 313100, P.R. China.

* Corresponding authors: <u>iamfwhuo@njtech.edu.cn</u> (F. Huo); <u>iamwnzhang@njtech.edu.cn</u> (W.

Zhang)

Fig. S1 SEM images of ZIF-L-Co with different morphologies: (a) High concentration. (b) Room temperature. (c) Ice-bath and (d) XRD patterns of ZIF-L-Co with different morphologies under various conditions.

Fig. S2 SEM image of the leaf-like CoSNC nanocomposites on carbon cloth.

Fig. S3 (a) TEM image of leaf-like CoSNC nanocomposites. (b) Size distribution histogram of CoS_2 nanoparticles in leaf-like CoSNC nanocomposites.

Fig. S4 TGA curve of the leaf-like CoSNC nanocomposites measured in O₂.

Fig. S5 (a) N_2 sorption isotherms and (b) Pore-size distribution of the leaf-like CoSNC nanocomposites.

Fig. S6 (a) SEM image of ZIF-67. (b) TEM image of ZIF-67. Top inset: enlarged image of the edge. (c) XRD pattern of ZIF-67. (d) SEM image of dodecahedral-like CoSNC nanocomposites. (e) TEM image of dodecahedral-like CoSNC nanocomposites. Top inset: enlarged image of the edge. (f) XRD pattern of dodecahedral-like CoSNC nanocomposites.

Fig. S7 TGA curve of dodecahedral-like CoSNC nanocomposites measured in O₂.

Fig. S8 (a) N_2 sorption isotherms and (b) Pore-size distribution of dodecahedral-like CoSNC nanocomposites.

Fig. S9 (a) CV curves at different scan rates from 5 to 100 mV s⁻¹ and (b) Charge/discharge curves at various current densities from 1 to 20 A g⁻¹ of dodecahedral-like CoSNC nanocomposites electrode.

Fig. S10 (a) SEM image and (b) TEM image of the leaf-like CoSNC nanocomposites after 10,000 cycles at a current density of 10 A g^{-1} .

Table S1. Comparsion of supercapacitor performances of MOF-derived carbon, MOF-derived

Electrode materials	Electrolytes	Maximum <i>Cs</i>	Rate performances	Cycling performances	References
1) Leaf-like CoSNC nanocomposites derived from ZIF-L- Co (48.2 wt.% of CoS ₂)	2 M KOH	383 F g ⁻¹ at 1.0 A g ⁻¹	C_S retention of 72.3% at 10 A g ⁻¹ C_S retention of 59% at 20 A g ⁻¹	C_S retention of 91% at 10 A g ⁻¹ after 10,000 cycles	This work
2) 3D interconnected porous carbons derived from MOF-5	6 M KOH	212 F g ⁻¹ at 0.05 A g ⁻¹	C_S retention of 82.5% at 20 A g ⁻¹	C_S retention of 95.9% after 1,000 cycles	Ref. S1
3) Hierarchically flower-like N-doped porous carbon derived from Cu- MOF	6 M KOH	149 F g ⁻¹ at 0.5 A g ⁻¹	C_S retention of 70.5% at 10 A g ⁻¹	<i>C_s</i> retention of 86.8% at 1.0 A g ⁻¹ after 2,000 cycles	Ref. S2
4) 2D CoSNC nanocomposites derived from PPF-3 nanosheets (21 wt.% of CoS _{1.097})	2М КОН	360 F g ⁻¹ at 1.5 A g ⁻¹	C_S retention of 56.8% at 30 A g ⁻¹	C_s retention of 90% at 12 A g ⁻¹ after 2,000 cycles	Ref. S3
5) Cu _{1.96} S-C polyhedra derived from HKUST-1 (74 wt.% of Cu1.96S)	2М КОН	200 F g ⁻¹ at 0.5 A g ⁻¹	C_S retention of 60% at 2.0 A g ⁻¹	<i>C_s</i> retention of 80% at 50 mV s ⁻¹ after 3,000 cycles	Ref. S4
6) CoS polyhedral nanocages derived from ZIF-67	1М КОН	1476 F g ⁻¹ at 1.0 A g ⁻¹	C_S retention of 63% at 10 A g ⁻¹	C_S retention of 88.2% at 10 A g ⁻¹ after 2,000 cycles	Ref. S5
7) 2D CoS sheets	2М КОН	1314 F g ⁻¹ at 1.0 A g ⁻¹	C_S retention of 54.4% at 20 A g ⁻¹	C_S retention of 91.7% at 3.0 A g^{-1} after 500 cycles	Ref.S6
8) 3D flower-like	6M KOH	522 F g ⁻¹ at	C_S retention of	C_S retention of 97.7% at 1.0 A	Ref. S7

carbon/metal sulfide and cobalt-based materials.

Co ₉ S ₈		0.5 A g ⁻¹	76% at 2.0 A g ⁻¹	g ⁻¹ after 1,000 cycles	
9) 3D flower-like CoS	6М КОН	586 F g ⁻¹ at 1.0 A g ⁻¹	C_S retention of 89% at 10 A g ⁻¹	C_s retention of 91% at 1.0 A g ⁻¹ after 1,000 cycles	Ref. S8

- [S1] M. X. Yu, L. Zhang, X. J. He, H. H. Yu, J. F. Han and M. B. Wu, *Mater. Lett.*, 2016, 172, 81-84.
- [S2] Z. X. Li, K. Y. Zou, X. Zhang, T. Han and Y. Yang, *Inorg. Chem.*, 2016, 55, 6552-6562.
- [S3] F. F. Cao, M. T. Zhao, Y. F. Yu, B. Chen, Y. Huang, J. Yang, X. H. Cao, Q. P. Lu, X. Zhang, Z. C. Zhang, C. L. Tan and H. Zhang, J. Am. Chem. Soc., 2016, 138, 6924-6927.
- [S4] R. B. Wu, D. P. Wang, V. Kumar, K. Zhou, A. W. K. Law, P. S. Lee, J. Lou and Z. Chen, *Chem. Commun.*, 2015, 51, 3109-3112.
- [S5] Z. Jiang, W. J. Lu, Z. P. Li, K. H. Ho, X. Li, X. L. Jiao and D. R. Chen, J. Mater. Chem. A, 2014, 2, 8603-8606.
- [S6] K. J. Huang, J. Z. Zhang, G. W. Shi and Y. M. Liu, *Mater. Lett.*, 2014, **131**, 45-48.
- [S7] F. L. Luo, J. Li, H. Y. Yuan and D. Xiao, *Electrochim. Acta.*, 2014, **123**, 183-189.
- [S8] L. Yin, L. Q. Wang, X. H. Liu, Y. S. Gai, L. H. Su, B. H. Qu and L. Y. Gong, *Eur. J. Inorg. Chem.*, 2015, 14, 2457-2462.