Supplementary Information for

Wearable Transparent Thermal Sensors and Heaters based on Metal-Plated Fibers and Nanowires

Hong-Seok Jo^{a,†}, Hyuk-Jin Kwon^{a,†}, Tae-Gun Kim^a, Chan-Woo Park^a, Seongpil An^{a,b},

Alexander L. Yarin^{a,b,*}, Sam S. Yoon^{a,*}

^aSchool of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea

^bDepartment of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607,

USA

AgNW films and (b) electroplated Cu/Ni films.

(R1-9, 1-10) Fig. S2 Transmittance *T* of (a) the AgNW TCF at a scanning speed of 4, 6 and 8 cm·s-1, (b) Cu TCF formed at $t_{Cu} = 3, 5, 7$ and 10 s and (c) Ni TCF formed at $t_{Ni} = 10$, 20, 30 and 50 s. The distribution of (d) the Cu fibers diameter at at $t_{Cu} = 3, 5, 7$ and 10 s and (e) the Ni fiber diameter at $t_{Ni} = 10, 20, 30$ and 50 s.

Fig. S3 *T* of the hybrid TCF of (a) Cu fiber at $t_{Cu} = 3$, 5, 7 and 10 s and (b) Ni fiber at $t_{Ni} = 10$, 20, 30 and 50 s. Photos of the hybrid TCF with (c) AgNW/Cu at t_{Cu} and (d) AgNW/ Ni at t_{Ni} .

(R1-12) Fig. S4 (a) The relationship of the experimental R_s and R of the Cu/Ni TCF. Transmittance (*T*) versus the theoretical R_s of the hybrid film with (b) Cu Fs and (c) Ni Fs. Figure of merits of (d) the Cu TCF and the hybrid TCF with AgNW/Cu and (e) the Ni TCF and hybrid TCF with AgNW/Ni. *T* and R_s of the hybrid TCF in terms of (f) the AgNW TCF.

Fig. S5 Electric characterizations of the sensor in response to temperature by the Cu TCF at $t_{Cu} = (a) 3$, (b) 5, (c) 7 and (d) 10 s.