Supporting Information

Adsorption and Diffusion of Lithium Polysulfides over Blue Phosphorene for Li-S batteries

Sankha Mukherjee,^a Lance Kavalsky, ^a Kinnor Chattopadhyay^{a,b} and Chandra Veer Singh^{a,b*}

a. Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada

b. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada

*corresponding author email: <u>chandraveer.singh@utoronto.ca</u>

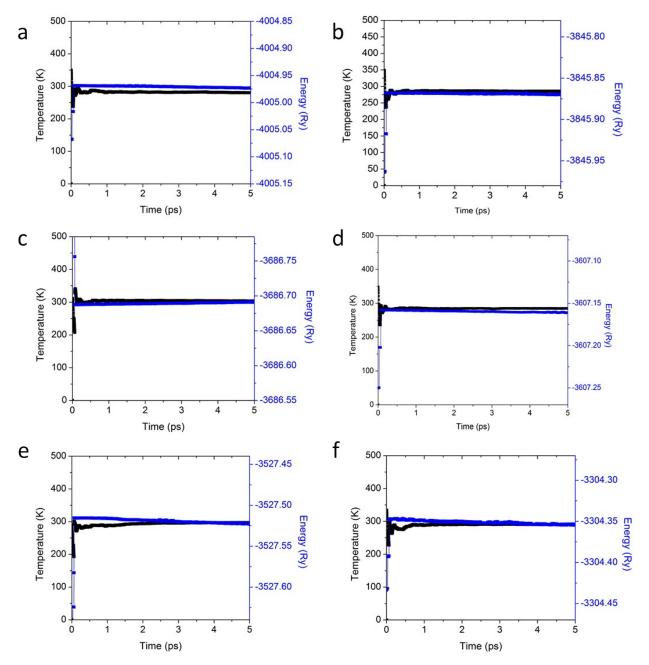


Figure S1: Time traces of temperature and total energy of a) Li_2S_8 b) Li_2S_6 c) Li_2S_4 d) Li_2S_3 e) Li_2S_2 and f) Li_2S over pristine BP obtained from AIMD simulations.

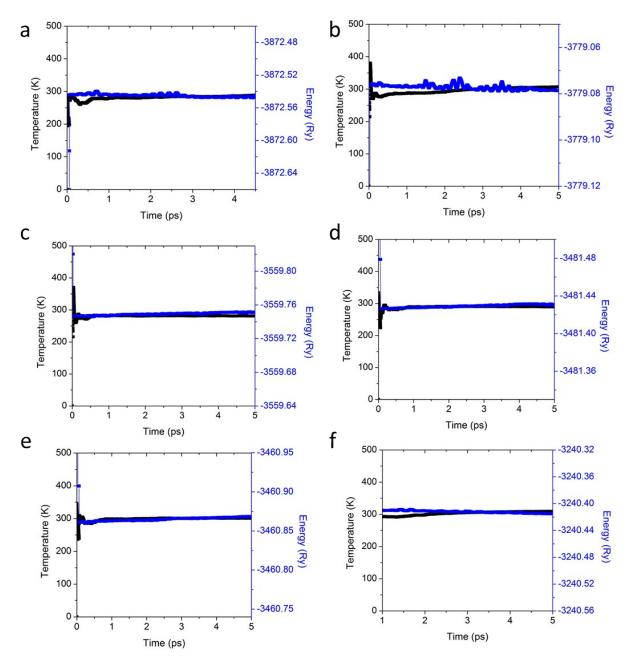


Figure S2: Time traces of temperature and total energy of a) Li_2S_8 b) Li_2S_6 c) Li_2S_4 d) Li_2S_3 e) Li_2S_2 and f) Li_2S over SVBP obtained from AIMD simulations.

Movie #	Cathodic host	Description	
1	Pristine BP	Li ₂ S	
2		Li_2S_2	
3		Li ₂ S ₃	
4		Li_2S_4	
5		Li ₂ S ₆	
6		Li_2S_8	
7	Single vacancy BP	Li ₂ S	
8		Li_2S_2	
9		Li ₂ S ₃	
10		Li ₂ S ₄	
11		Li ₂ S ₆	
12		Li ₂ S ₈	

Table S1: Legend for movie files showing the evolution of LiPSs on BP hosts at 300 K.

Table S2: Comparison of energy barriers associated with the diffusion of Li, Na^1 and K^1 over pristine BP and their atomic radii.

	Alkali metal	Diffusion barrier (ΔE)		Atomic
		Armchair	Zigzag	radius (nm)
	Li	0.45	0.12	167
	Na ^[1]	0.24	0.11	190
	K ^[1]	0.11	0.093	243

Reference

1. Mukherjee, S.; Kavalsky, L.; Singh, C. V., Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes. *ACS applied materials & interfaces* **2018**.