

## **Nanoscale**

## **ARTICLE**

## **Supporting information**

Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions

Mohammed Noori<sup>1,2</sup>, Hatef Sadeghi<sup>1,\*</sup> and Colin J. Lambert<sup>1</sup>

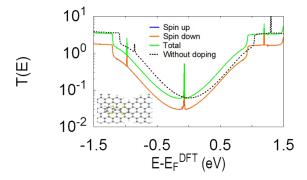



Figure S1. The spin-dependent and total transmission coefficient as a function of energy for TTF nanoconstriction junction

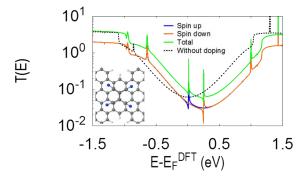



Figure S2. The spin-dependent and total transmission coefficient as a function of energy for TCNE nanoconstriction junction

<sup>&</sup>lt;sup>1</sup>The Theory of Molecular-scale Transport, Department of Physics, Lancaster University, Lancaster, UK

<sup>&</sup>lt;sup>2</sup>Department of Physics, College of Science, University of Thi-Qar, IRAQ

<sup>\*</sup>h.sadeghi@lancaster.ac.uk; c.lambert@lancaster.ac.uk

ARTICLE Journal Name

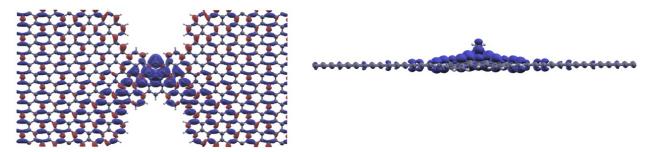



Figure S3. Local density of states (LDOS) of the graphene nanoconstrictions in the presence of 4-picoline radical. The LDOS is calculated by integrating the imaginary of the Green's function G(r,E) with respect to energy E over a small energy window centered of a given atom.