Supplementary information

Superhydrophobic Plasmonic Nanoarchitectures based on Aluminum Hydroxide Nanotemplates

Daesung Yoon, [‡]a Songhwa Chae, [‡]a Wook Kim, ^a Donghun Lee^{*b} and Dukhyun Choi^{*}a

^a Department of Mechanical Engineering, Kyung Hee University, 17104 Yongin, Republic of Korea. E-mail: dchoi@khu.ac.kr

^b Department of Physics, Korea University, 02841 Seoul, Republic of Korea. E-mail: donghun@korea.ac.kr

Fig. S1. FE-SEM top view of the aluminum hydroxide nanostructure.

Fig. S2. Contact angle of gold-coated aluminum hydroxide nanostructures with respect to deposited gold thickness.

Fig. S3. Absorbance spectrum of the aluminum hydroxide nanostructure in the visible wavelength range, showing a small absorbance hump around 350 - 400 nm.

Fig. S4. SERS signal on our nanostructure for 1 μM R6G and Raman signal on glass for 40 mM R6G.

Fig. S5. SERS spectra of R6G molecules on the sample at $t_{Ag} = 10$ nm.

Fig. S6. SERS spectra of R6G molecules on the sample at $t_{Ag} = 20$ nm.

Fig. S7. SERS spectra of R6G molecules on the sample at $t_{Ag} = 40$ nm.

Fig. S8. SERS spectra of R6G molecules on the sample at $t_{Ag} = 60$ nm.

Fig. S9. SERS spectra of R6G molecules on the sample at $t_{Ag} = 100$ nm.

0

Movie S1. Contact angle movie on a pristine aluminum hydroxide nanostructure

Movie S2. Contact angle movie on a pristine aluminum hydroxide nanostructure (left white) and a superhydrophobic plasmonic nanostructure (right brown)