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A. Supplementary Information: Thorough theoretical procedure for equations extraction

Generalized Noise Modeling methodology:

Under the assumption that the channel of the device is noiseless apart from an elementary slice 

between positions χ and χ+Δχ as it is shown in Fig. 2b in the manuscript, the microscopic noise coming 

from this slice of the channel can be modeled as a local current source δIn with a PSD SδI
2

n which is 

connected between χ and χ+Δχ in parallel with the resistance of the slice ΔR (Norton equivalent) 43. The 

transistor then can be split into two noiseless transistors M1 and M2 on each side of the local current 

noise source, at the source and drain side ends with channel lengths equal to χ and L-χ respectively. 

Since the voltage fluctuations on parallel resistance ΔR are small enough compared to thermal voltage 

UT, small signal analysis can be used in order to extract a noise model according to which, M1 and M2 

can be replaced by two simple conductances GS on the source side and GD on the drain side. The total 

channel conductance comes from the series connection of GS and GD as: 1/GCH=1/Gs+1/GD
43. The 

fluctuation of the current due to the local current noise source at the drain side δInD and its 

corresponding PSD SδI
2

nD are given by the following equations43:
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The PSD of the total noise current fluctuation at the drain side SID due to all different sections along 

the channel is obtained by summing their elementary contributions SδI
2

nD assuming that the contribution 

of each slice at different positions along the channel remains uncorrelated43:
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Carrier Number Fluctuation Effect:

As mentioned in the manuscript, the fluctuation of the trapped charge δQt can cause a variation in the 

chemical potential δVc which can lead to a change to all charges that depend directly on chemical 

potential such as the graphene charge, the top gate and the back gate charge. The application of the 

charge conservation law gives:
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These induced fluctuations of the graphene, top gate and back gate charges can be related to the 

fluctuation of the chemical potential δVc as15, 43-46:
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If eqns (A4, A5) are taken into account then eqn (1) is transformed in eqn (3) in the manuscript. If the 

linear relationship between quantum capacitance and chemical potential mentioned in the manuscript, 

is integrated, charge of graphene can be calculated as: 

                                                                                                                                  (Eq. A6)
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 The PSD of the local noise source is calculated by eqn (4) in the manuscript. Taking the integral of this 

from Source to Drain in order to calculate the total 1/f noise PSD as in eqn (A3)15, 43, we have:

                                            (Eq. A7)
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In order to express this integral in terms of chemical potential Vc, we have to change the integral 

variable as45-46:
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Where drain current is given as45-46:
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With k=2·e3/(π·h2·v2f)45-46 where vf is the Fermi velocity (=106 m/s) and h the reduced Planck constant 

(=1,05·10-34 J·s). Bias dependent term g(Vc) 
 is calculated as45-46:
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eqn (A7) is transformed because of eqns (A8, A9, A10) to:

        (Eq.A11)
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The integral in eqn (A11) can be solved analytically and gives the eqns (2, 5) in the manuscript.

Mobility Fluctuation Effect:

In the empirical Hooge model, the PSD of the local noise source is expressed as43:

                                                                                                                    (Eq.A12)
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If eqn (A12) is integrated along the channel as eqn (A3), the total noise PSD due to mobility fluctuations 

effect can be calculated as43:

                                                                                             (Eq. A13)
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If eqn (A8) is applied in order to change the integration variable from x to Vc:

                                      (Eq.A14)
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Where Qgr is simplified in eqn (A14) and does not play a role in mobility fluctuation effect. If eqns (A9, 

A10) are also taken into account, then:

                            (Eq.A15)
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The integral in eqn (A12) can be solved analytically and gives the eqns (6, 7) in the manuscript.



B. Supplementary Information Figure S1: Detailed examination of graphene charge along the 

channel.

Figure S1. Graphene charge Qgr(x) vs. channel position x, for VGS-VCNP = -0,5 V (a), 0 V (CVP) b) and 0,5 

V (c) at VDS = 20, 60 mV for W/L=40 μm/43 μm.

Away from CNP (Fig. S1a-S1c), Qgr(x) is ~6-6.5∙10-7 C.cm-2 all along the channel for both drain voltage 

values. Considering the relative fluctuation of Qgr(x) from source terminal to the middle of the channel 

shown in Fig. 2c of the manuscript, the homogeneity of the channel is shown at high gate voltages for 

both VDS values. Near CNP (Fig. S1b), Qgr(x) is equal to residual charge, e·ρ0, at x=L/2 for both high and 

low VDS. This value remains almost constant throughout the channel for VDS=20 mV but it is increased 

significantly for VDS=60 mV confirming the inhomogeneous channel under these conditions.     

C. Supplementary Information: Detailed examination of effect of residual charge in the M-shape bias 

dependence of 1/f noise.

If the procedure of the extraction of the theoretical equations regarding carrier number fluctuation 

effect takes place without considering residual charge, this can lead to very significant conclusions 

regarding the effect of residual charge on noise behavior. If residual charge is considered insignificant, 

then it must be eliminated in eqns (A6, A10). This results in the extraction of the following equation 

regarding 1/f noise due to carrier number fluctuation effect if the equivalent integral of eqn (A8) is 

solved:
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and KD/ΔN is now given as:

                        (Eq.A17)
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eqn (A17) is much simpler that eqn (2) of the manuscript. Regarding Hooge model, residual charge 

plays a role only in g(Vc) factor in eqn (A10). As it can be seen in Fig. 3a of the manuscript, the omission 

of the residual charge lead to a Λ – shape behavior even for the carrier number fluctuation effect while 

the less the residual charge, the steeper Λ – shape trend with a higher maximum is observed for both 

carrier number and mobility fluctuation effects.

It would be very useful to observe how the absence of the residual charge affects both noise 

mechanisms ΔΝ and Δμ locally in the transistor channel. Regarding ΔΝ local noise model described by 

eqn (4) of the manuscript and Δμ local noise model described by eqn (A12), residual charge has an effect 

only in Qgr as this is defined in eqn (A6). As it can be seen in Fig. S2, residual charge does not affect local 

noise at higher gate voltages for both noise mechanisms as it was expected (see Fig. 3a of the 

manuscript) since there ρ0 does not affect significantly Qgr. On the contrary at CNP, where ρ0 

approximately dominates Qgr, the effect on local noise mechanisms is important. Fig. S2a shows the 

increase of ΔΝ local noise when ρ0 is ignored leading to the Λ-shape of Fig. 3a of the manuscript. Similarly 

Fig. S2b shows the increase of Δμ local noise when ρ0 is ignored.   

Figure S2. Normalized PSD of the local noise, Sδin/ID
2, referred to 1 Hz, vs. channel potential x for ΔΝ 

(a) and Δμ (b) noise mechanisms.   

a) b)



D. Supplementary Information Figure S3: similar analysis with Fig. 4a and 4b of the manuscript but 

for the rest of the channel lengths

Figure S3. Output noise divided by squared drain current SID/ID
2, referred to 1 Hz, vs. top gate voltage 

overdrive VGS – VCNP, for liquid top-gated GFETs with W=40 μm for channel length L=23 μm (a), L=13 μm 

(b) and L=8 μm (c) at VDS = 20, 60 mV. markers: measured, solid lines: model, dashed lines: different 

noise contributions.

E. Supplementary Information: Derivation of an (gm/ID)2 related LFN model with and without 

correlated mobility fluctuations

A very common approximation for modeling LFN in Si MOSFETs relates the output noise divided by 

squared drain current SID/ID
2, with the squared transconductance to current ratio (gm/ID)2 15-16. Despite 

the fact that this model is widely used in circuit simulators, is valid only under uniform channel 

conditions. This method has also been applied in Graphene FETs4 and has been found to underestimate 

LFN at CNP where the channel is non-uniform even for a small VDS as shown in Figure 2c of the main 

manuscript. In this section we will follow a similar approach as in References 15-17 in order to show how 

this model is extracted for Graphene FETs with and without the effect of correlated mobility fluctuations. 

For reasons of simplicity and since back gate voltage is not active in the devices used in this work, both 

back gate voltage and capacitance will be ignored. 

Initially, we will show that the model proposed in Reference 16 (SID/ID
2= (gm/ID)2.SVfb ) can be also 

applied in SLG FETs. From basic GFET electrostatics and if back gate is ignored we have:
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From eqn (A18) we can conclude that dVGS/dQgr(x)=-1/Ct while if we assume that KVc>>qT which means 

that we are away from CNP and thus Cq>>Ct then from eqns (1, 3) of the main manuscript we have 

dQgr(x)/dQt=1. So eqn (A19) becomes:

                    (Eq. A20)
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Again from Drift-Diffusion theory we have:
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Under the assumption of a uniform channel where the graphene charge Qgr and the electric field dV/dx 

are constant along it we have:
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From eqns (A20, A22) and since dID/dVGS=gm we conclude:

                                   (Eq. A23)
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Which leads to:

                                                                                                   (Eq. A24)
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The above eqn is exactly the same with eqn (9) of Reference 16 with the constant term to represent 

the flat band voltage fluctuations SVFb. As we proved before, this model is valid only under uniform 

channel conditions and away from the CNP.

According to Reference 17, the model of eqn (A24) can be expanded including the correlated mobility 

fluctuations as:

                                                                            (Eq. A25)

2

2 2

2
DI m

c t
D D t

q KT NS g Tf C
I I WLC


 

 
     



where αc is the Coulomb scattering coefficient in V.s/C and μ is the mobility of the device. Figure S4 

below presents the behavior of this simple approach described above with (eqn A25) and without (eqn 

A24) the effect of correlated mobility fluctuations for the shortest device with L=5.5 μm at VDS=20 mV 

and VDS=60 mV. 

Figure S4. Output noise normalized with area and divided by squared drain current SID/ID
2, referred to 

1 Hz, vs. top gate voltage overdrive VGS – VCNP (a) and vs. drain current in both p- and n-type region (b) 

for liquid top-gated GFETs with W/ L=40 μm / 5.5 μm at VDS=20 mV and VDS=60 mV. markers: measured, 

solid lines: eqn (A25) model, dashed lines: eqn (A24) model.

Figure S4a presents the normalized SID/ID
2 LFN vs top gate voltage overdrive VGS – VCNP and what can 

be observed is that the model of eqn (A24) (αc=0) underestimates LFN as it is also shown in Figure 4a of 

the manuscript for the longest device. Furthermore it is clear that the behavior of LFN is independent of 

VDS even at the CNP because of the consideration of a uniform channel. If correlated mobility fluctuations 

model of eqn (A25) is activated then for a value of αc=450 Vs/C the model captures the level of LFN at 

CNP still with no drain voltage dependence. But simultaneously the model overestimates LFN at higher 

gate voltages. Even if we assume that with an appropriate combination of αc and αH parameters we 

could achieve a better fitting, still the model would be independent of VDS due to the homogeneous 

channel consideration.  

Figure S4b presents the results of Figure 4a versus drain current ID in log scale. Since ID is symmetrical 

below (p-type) and above (n-type) CNP as it is shown in Figure 1c of the main manuscript, the two regions 

should be shown separately in log-scale. In an illustration similar to Figure S4b for Si MOSFETs, SID/ID
2

 

LFN is maximum and constant in weak inversion region and decreases as we get deeper in strong 

inversion (See Figure 6 of Reference 17). Regarding weak inversion regime, this occurs because gm/ID
 

a) b)



term is maximum and constant in the specific region and thus, eqn (A24) becomes equivalent to eqn 

(A25) since αc is negligible. Consequently, NT parameter which is included in SVfb term is extracted. As the 

drain current gets higher, LFN decreases and αc parameter is extracted from this higher current regime. 

This is not the case in GFET though as it can be seen from Figure S4b since (gm/ID)2 is not constant in 

lower current regime. 

F. Supplementary Information Figure S5: normalized output noise with device area - WLSID/ID2

Figure S5. Output noise normalized with area and divided by squared drain current WLSID/ID
2, referred 

to 1 Hz, vs. top gate voltage overdrive VGS – VCNP for liquid top-gated GFETs with W=40 μm for different 

channel length values (L=43, 23, 13, 8, 5.5 μm) at VDS=20 mV (a), VDS=40 mV (b) and VDS=60 mV (c). 

markers: measured, solid lines: model.
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