High magnetoresistance in ultra-thin two dimensional Cr-based MXenes

Jianhui Yang,^{a,b} Shaozheng Zhang,^a Anping Wang,^a Ruining Wang,^c Chuan-Kui Wang,^{*,d} Guang-Ping Zhang,^{*,d} and Liang Chen^{*,b}

^a Quzhou University, Quzhou 324000, P. R. China

^b Ningbo Institute of Materials Technology and Engineering, Chinese Academy of

Sciences, Ningbo, Zhejiang, 315201, P. R. China. Email: chenliang@nimte.ac.cn.

^c Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics

Science and Technology, Hebei University, Baoding 071002, People's Republic of China

^d Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China. Email: zhangguangping@sdnu.edu.cn, ckwang@sdnu.edu.cn.

Support information

Fig. S1. (a)-(e) Side views of FM (a), AFM1 (b), AFM2 (c), AFM3 (d) and AFM4 (e) magnetic configurations for $Cr_2TiC_2F_2$. (f)-(j) Side views of FM (f), AFM1 (g), AFM2 (h), AFM3 (i) and AFM4 (j) magnetic configurations for $Cr_2Ti2C_3F_2$.

Table S1. Stable model and corresponding magnetic configuration, lattice constant (a), lattice mismatch (x), interlayer distances (d₁), thickness of MXene (d₂), E_{ad} between Au and MXene layers, magnetic moment for Cr atom (M_{Cr}) for Au-Cr₂CF₂-Au, Au-Cr₂Ti_C₂F₂-Au and Au-Cr₂Ti₂C₃F₂-Au sandwich structures.

Structures	Lattice	Adhesion	E_{ad}	$d_l(\text{\AA})$	<i>d</i> ₂ (nm)	Magnetic	M _{Cr}
	mismatch	Models	(eV/atom)			state	(μ_B)
Au-Cr ₂ CF ₂ -Au	3.3%	H _A	0.51	2.57	0.70	AFM3	±2.49
Au-Cr ₂ TiC ₂ F ₂ -Au	3.6%	H_A	0.53	2.56	0.96	AFM3	±2.59
$Au\text{-}Cr_2Ti_2C_3F_2\text{-}Au$	3.7%	H _A	0.56	2.52	1.21	FM	2.60

Adsorption	Magnetic	Е	Cr _{mag}
Site	State	(eV/cell)	(μ_B)
	NM	-71.156	0.000
D	FM	-71.377	1.734
	AFM1	-71.274	±1.045
В	AFM2	-71.378	±1.949
	AFM3	-71.990	±2.492
	AFM4	-	-
	NM	-71.197	0.000
	FM	-71.417	1.730
II	AFM1	-71.324	±1.041
Π _A	AFM2	-	-
	AFM3	-72.032	±2.492
	AFM4	-	-
	NM	-71.179	0.000
	FM	-71.395	1.731
TT	AFM1	-71.300	±1.036
HB	AFM2	-	-
	AFM3	-72.014	±2.490
	AFM4	-	-
	NM	-71.105	0.000
	FM	-71.358	1.716
т	AFM1	-71.236	±1.048
1	AFM2	-	-
	AFM3	-71.902	±2.466
	AFM4	-	-

Table S2. Total energy (E) and magnetic moments of Cr atoms (Cr_{mag}) for Au-Cr₂CF₂-Au with Bridge (B), Hollow-A (H_A), Hollow-B (H_B) and Top (T) adsorption structures, respectively. The most stable magnetic states were bolded.

Adsorption	Magnetic	Е	Cr _{mag}
Site	State	(eV)	$(\mu_{\rm B})$
	NM	-90.039	±0.016
	FM	-91.151	2.595
D	AFM1	-90.911	±2.384
В	AFM2	-90.865	±2.346
	AFM3	-91.218	±2.594
	AFM4	-90.891	±2.385
	NM	-90.056	0.000
	FM	-91.181	2.592
TT	AFM1	-90.946	±2.383
н _А	AFM2	-90.899	±2.344
	AFM3	-91.252	±2.591
	AFM4	-90.925	±2.384
	NM	-90.049	-0.001
	FM	-91.175	2.589
П	AFM1	-90.941	±2.383
н _в	AFM2	-90.894	±2.342
	AFM3	-91.248	±2.591
	AFM4	-90.940	±2.389
	NM	-90.047	0.000
	FM	-91.124	2.615
т	AFM1	-90.838	±2.358
1	AFM2	-90.807	±2.329
	AFM3	-91.147	±2.583
	AFM4	-90.815	±2.344

Table S3. Total energy (E) and magnetic moments of Cr atoms (Cr_{mag}) for Au-Cr₂TiC₂F₂-Au with Bridge (B), Hollow-A (H_A), Hollow-B (H_B) and Top (T) adsorption structures, respectively. The most stable magnetic states were bolded.

Adsorption	Magnetic	Е	Cr _{mag}
Site	State	(eV)	$(\mu_{\rm B})$
	NM	-109.252	0.000
	FM	-110.439	2.604
р	AFM1	-110.160	±2.352
В	AFM2	-	-
	AFM3	-110.422	±2.624
	AFM4	-	-
	NM	-109.286	0.000
	FM	-110.469	2.602
П	AFM1	-110.174	±2.348
Π_{A}	AFM2	-	-
	AFM3	-110.454	±2.622
	AFM4	-	-
	NM	-109.266	0.000
	FM	-110.461	2.602
TT	AFM1	-110.194	±2.353
$\Pi_{\rm B}$	AFM2	-109.266 -110.461 -110.194 -110.205	± 2.370
	AFM3	-110.448	±2.622
	AFM4	-	-
	NM	-109.268	0.000
	FM	-110.423	2.616
т	AFM1	-110.080	±2.330
1	AFM2	-110.081	±2.347
	AFM3	-110.379	±2.630
	AFM4	-	-

Table S4. Total energy (E) and magnetic moments of Cr atoms (Cr_{mag}) for Au-Cr₂Ti₂C₃F₂-Au with Bridge (B), Hollow-A (H_A), Hollow-B (H_B) and Top (T) adsorption structures, respectively. The most stable magnetic states were bolded.

Fig. S2. $\Delta E (E_{FM}-E_{AFM})$ of Au-Cr₂CF₂-Au, Au-Cr₂TiC₂F₂-Au, and Au-Cr₂Ti₂C₃F₂-Au with

extensile strain.

Fig. S3. Transfer charge for (a) Au-Cr₂CF₂-Au with AFM3 (b) Au-Cr₂TiC₂F₂-Au with AFM3 and (c) Au-Cr₂Ti₂C₃F₂-Au with FM magnetic structure, respectively. Isosurface value for (a), (b) and (c) was set to 0.0007 $e/Å^3$. Red and blue isosurface mean positive and negative region, respectively.

Fig. S4. PDOS of Au-Cr₂CF₂-Au in AFM configuration.

Fig. S5. PDOS of Au-Cr₂CF₂-Au in FM configuration.

Fig. S6. PDOS of Au-Cr₂TiC₂F₂-Au in AFM configuration.

Fig. S7. PDOS of Au-Cr₂TiC₂F₂-Au in FM configuration.

Fig. S8. PDOS of Au-Cr₂Ti₂C₃F₂-Au in AFM configuration.

Fig. S9. PDOS of Au- $Cr_2Ti_2C_3F_2$ -Au in FM configuration.