SUPPLEMENTARY INFORMATION

Fluorescent 2D Metal-Organic Framework Nanosheets (MONs): Design, Synthesis and Sensing of Explosive Nitroaromatic Compounds (NACs)

Vijay Kumar Maka, Arindam Mukhopadhyay, Govardhan Savitha and Jarugu Narasimha Moorthy*

Department of Chemistry, Indian Institute of Technology, Kanpur 208016, INDIA

E-mail: moorthy@iitk.ac.in

CONTENTS

1.	Crystal data and refinement parameters for In-TPA	S3
2.	Simplified topological network of In-TPA and building units considered for nodes	S4
3.	Crystal structure of In-TPA with the thickness of a single layer	S4
4.	BET surface area analysis of In-TPA	S5
5.	TGA profile of pristine In-TPA	S5
6.	PXRD profiles of In-TPA simulated, pristine bulk material, after soaking in water for 24 h and after exfoliation	S6
7.	IR (KBr) spectra of H ₆ TPA, In-TPA pristine and after exfoliation	S6
8.	AFM image and corresponding height profile diagram for the 2D nanosheet of In-TPA	S7
9.	XPS characterization of the exfoliated 2D nanosheets of In-TPA deposited on silicon wafers	S7
10.	Dynamic Light Scattering (DLS) Experiment and plot of particle size distribution for 2D metal-organic nanosheets of In-TPA with respect to scattering normalized intensity obtained by DLS analysis	S8
11.	UV-vis absorption spectra of NACs at different concentrations and that of In-TPA in ethanol	S9
12.	Fluorescence emission spectra of H_6TPA and In-TPA for excitation at 350 nm in ethanol	S10
13.	Fluorescence excitation ($\lambda_{emi} = 460 \text{ nm}$) and emission ($\lambda_{ex} = 370 \text{ nm}$) spectra of In-TPA in ethanol.	S10
14.	Quenching of fluorescence intensity of In-TPA with increasing concentration of NAC in ethanol ($\lambda_{ex} = 350$ nm) and determination of the Stern-Volmer quenching constant	S11-S12
15.	Quenching of fluorescence of In-TPA with increasing concentration of NAC in ethanol for excitation at 370 nm and at 400 nm, determination of Stern-Volmer quenching constants for excitation at 370 nm and 400 nm	S13-S16

	and excitation spectra of In-TPA with increasing concentration of NAC in		
	ethanol recorded with $\lambda_{emi} = 460$ nm and $\lambda_{emi} = 500$ nm		
16.	Plot of fluorescence quenching efficiency (η %) versus concentration for	S17	
	each of the NACs for λ_{ex} of In-TPA at 400 nm		
17.	Quenching of fluorescence intensity of H_6TPA with increasing	S18-S19	
	concentration of NAC in ethanol ($\lambda_{ex} = 350$ nm) and determination of the		
	Stern-Volmer quenching constant		
18.	The correlation between reduction potentials and Stern–Volmer quenching	S20	
	constants of various nitroaromatic analytes for H ₆ TPA		
19.	A plot of quenching efficiency vs concentration for each of the	S20	
	nitroaromatic analytes for H ₆ TPA		
20.	A table of reduction potentials and H_6TPA fluorescence quenching data	S20	
	for various NACs		
21.	Determination of the sensitivity of In-TPA towards the detection of TNT	S21	
22.	Fluorescence lifetime decay trace of the ethanolic suspension of In-TPA	S21	
23.	¹ H and ¹³ C NMR spectra of 2	S22	
24.	¹ H and ¹³ C NMR spectra of H_6TPA	S23	

Identification code	In-TPA		
Empirical formula	C78 H67 In42 N7 O16		
Formula weight	3176.04		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 23.254(3) Å	$\alpha = 90^{\circ}$	
	b = 22.981(3) Å	β= 98.488(4)°	
	c = 17.777(2) Å	$\gamma = 90^{\circ}$	
Volume	9396(2) Å ³		
Z	4		
Density (calculated)	1.123 mg/m ³		
Absorption coefficient	0.547 mm ⁻¹		
F(000)	3240		
Crystal size	0.2 x 0.2 x 0.2 mm ³		
Theta range for data collection	2.117 to 25.090°		
Index ranges	$-27 \le h \le 27, -27 \le k \le 27, -21 \le l \le 21$		
Reflections collected	39236		
Independent reflections	8345 [R(int) = 0.1238]		
Completeness to theta = 25.090°	99.6 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8345 / 0 / 421		
Goodness-of-fit on F ²	1.034		
Final R indices [I>2sigma(I)]	$R_1 = 0.0883, wR_2 = 0.2638$		
R indices (all data)	$R_1 = 0.1509, wR_2 = 0.3074$		
Largest diff. peak and hole	1.986 and -1.463 eÅ ⁻³		

Fig. S1 Simplified topological network of **In-TPA** and building units considered for nodes. For topological analysis of **In-TPA**, the linker **TPA** without carboxylates was considered as one node and Indium-tricarboxylate complex including DMF was considered as the second node.

Fig. S2 Crystal structure of **In-TPA** showing the thickness of a single layer. Notice that the thickness of a single layer is ca. 1.61 nm.

Fig. S3 BET surface area analysis of In-TPA.

Fig. S4 TGA profile of pristine In-TPA.

Fig. S5 PXRD profiles of **In-TPA** simulated, pristine bulk material, after soaking in water for 24 h and after exfoliation.

Fig. S6 IR (KBr) spectra of H_6TPA (blue line), In-TPA pristine (black line) and after (red line) exfoliation.

Fig. S7 a) AFM image and (b) corresponding height profile diagram for the 2D nanosheet of In-TPA.

Fig. S8 XPS analysis of the exfoliated 2D nanosheets of In-TPA deposited on silicon wafers.

Dynamic Light Scattering (DLS) Experiment. For DLS analysis of the 2D MONs of **In-TPA**, 2.0 mg of the crystals of pristine **In-TPA** in ethanol (10 mL) were subjected to sonication for 60 min, and the particle size distribution of the resultant suspension was analyzed immediately. The DLS experiments were carried out using a 'Malvern Zetasizer' particle size analyzer at 298 K. As shown below, the mean particle size of the material was found to be 310 nm.

Fig. S9 Plot of particle size distribution for 2D MONs of **In-TPA** with respect to scattering normalized intensity obtained by DLS analysis after 60 min of ultrasonication in ethanol.

Fig. S10 UV-vis absorption spectra of NACs at different concentrations and that of In-TPA in ethanol.

Fig. S11 Fluorescence emission spectra of H_6TPA (orange line) and In-TPA (cyan line) for excitation at 350 nm in ethanol.

Fig. S12 Fluorescence excitation ($\lambda_{emi} = 460 \text{ nm}$) and emission ($\lambda_{ex} = 370 \text{ nm}$) spectra of **In-TPA** in ethanol.

Fig. S13 (a) Quenching of fluorescence intensity of **In-TPA** with increasing concentration of NT in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S14 (a) Quenching of fluorescence intensity of **In-TPA** with increasing concentration of NB in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S15 (a) Quenching of fluorescence intensity of **In-TPA** with increasing concentration of DNB in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S16 Quenching of fluorescence of **In-TPA** with increasing concentration of NT in ethanol for excitation at 370 nm (a) and at 400 nm (c). Determination of Stern-Volmer quenching constants for excitation at 370 nm (b) and 400 nm (d). Excitation spectra of **In-TPA** with increasing concentration of NT in ethanol recorded with $\lambda_{emi} = 460$ nm (e) and $\lambda_{emi} = 500$ nm (f).

Fig. S17 Quenching of fluorescence of **In-TPA** with increasing concentration of NB in ethanol for excitation at 370 nm (a) and at 400 nm (c). Determination of Stern-Volmer quenching constants for excitation at 370 nm (b) and 400 nm (d). Excitation spectra of **In-TPA** with increasing concentration of NB in ethanol recorded with $\lambda_{emi} = 460$ nm (e) and $\lambda_{emi} = 500$ nm (f).

Fig. S18 Quenching of fluorescence of **In-TPA** with increasing concentration of DNB in ethanol for excitation at 370 nm (a) and at 400 nm (c). Determination of Stern-Volmer quenching constants for excitation at 370 nm (b) and 400 nm (d). Excitation spectra of **In-TPA** with increasing concentration of DNB in ethanol recorded with $\lambda_{emi} = 460$ nm (e) and $\lambda_{emi} = 500$ nm (f).

Fig. S19 Quenching of fluorescence of In-TPA with increasing concentration of TNT in ethanol for excitation at 370 nm (a) and at 400 nm (c). Determination of Stern-Volmer quenching constants for excitation at 370 nm (b) and 400 nm (d). Excitation spectra of In-TPA with increasing concentration of TNT in ethanol recorded with $\lambda_{emi} = 460$ nm (e) and $\lambda_{emi} = 500$ nm (f).

Fig. S20 Plot of fluorescence quenching efficiency (η %) versus concentration for each of the NACs for λ_{ex} of In-TPA at 400 nm.

Fig. S21 (a) Quenching of fluorescence intensity of H_6TPA with increasing concentration of NT in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S22 (a) Quenching of fluorescence intensity of H_6TPA with increasing concentration of NB in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S23 (a) Quenching of fluorescence intensity of H_6TPA with increasing concentration of DNB in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S24 (a) Quenching of fluorescence intensity of H_6TPA with increasing concentration of TNT in ethanol ($\lambda_{ex} = 350$ nm). (b) Determination of the Stern-Volmer quenching constant.

Fig. S25 (a) The correlation between reduction potentials and Stern–Volmer quenching constants of various nitroaromatic analytes (b) A plot of quenching efficiency versus concentration for each of the nitroaromatic analytes for H_6TPA .

NAC	E ⁰ _{red} (V vs. SCE)	K _{SV} (M ⁻¹)
NT	-1.20	32.3
NB	-1.15	44.5
DNB	-0.91	64.4
TNT	-0.70	101.4

Table S2. Reduction potentials and H₆TPA fluorescence quenching data for various NACs.

Fig. S26 Determination of the sensitivity of **In-TPA** towards the detection of TNT. Notice that the limiting concentration has been calculated from the point of intersection of the two linear fits that are colored in red. The ppm (i.e., mg/L) values are calculated as follows x (in ppm) = y (limiting conc. M) x MW/1000.

Fig. S27 Fluorescence lifetime decay trace ($\lambda_{ex} = 375 \text{ nm}$; $\lambda_{em} = 460 \text{ nm}$) of the ethanolic suspension of In-TPA.

Fig. S28 ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of 2.

Fig. S29 ¹H NMR (400 MHz, DMSO- d_6) and ¹³C NMR (125 MHz, DMSO- d_6) spectra of H₆TPA.