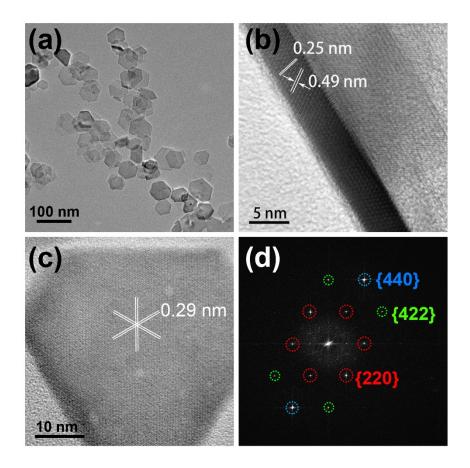
Electronic Supplementary Information

Iron-oxide-based twin nanoplates with strong T_2 relaxation shortening for contrast-enhanced magnetic resonance imaging


Ruixue Wei,^a Tiantian Zhou,^b Chengjie Sun,^a Hongyu Lin,^a Lijiao Yang,^a Bin W. Ren,^a Zhong Chen,^b and

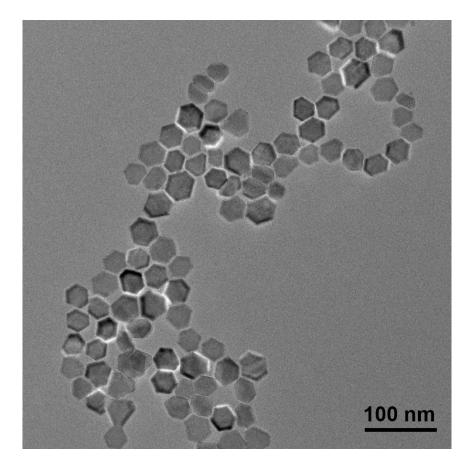
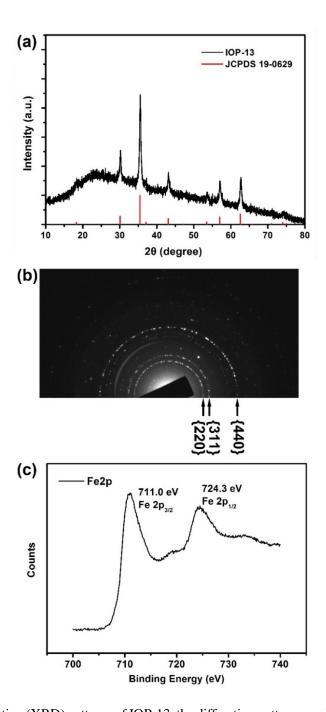
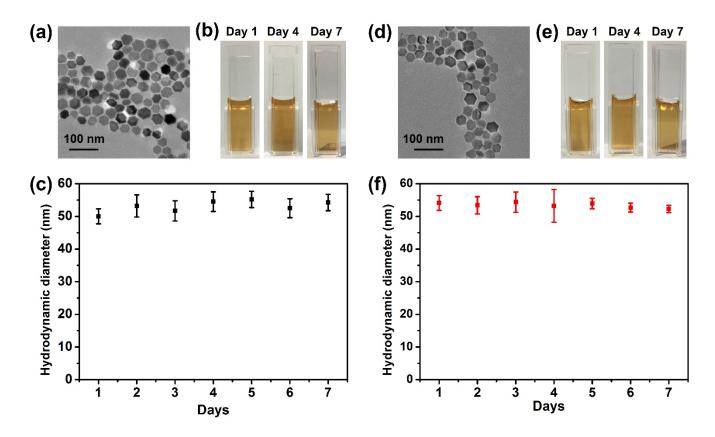
Jinhao Gao*a

^aState Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^bFujian Key Laboratory of Plasma and Magnetic Resonance, College of Electronic Science and Technology, Xiamen University, Xiamen 361005, China.

*Email: jhgao@xmu.edu.cn

Fig. S1 A TEM image, HRTEM images and fast fourier transform (FFT) patterns of iron oxide nanoplates with thickness of 3 nm (IOP-3). (a) A TEM image of IOP-3. (b) A side-view HRTEM image of IOP-3, the lattice spacing distance of 0.25 nm and 0.49 nm could be ascribed to the {311} plane and {111} plane, respectively. The crystal zone could be ascribed to $[0\bar{1}1]$. (c) A top-view HRTEM image of IOP-3, the crossed lattice spacing distance of 0.29 nm could be attributed to the {220} plane. (d) FFT patterns of (c), showing {111} facets of face-centered cubic (FCC) crystals

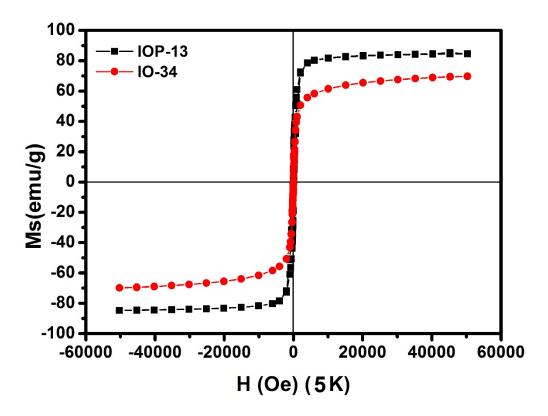
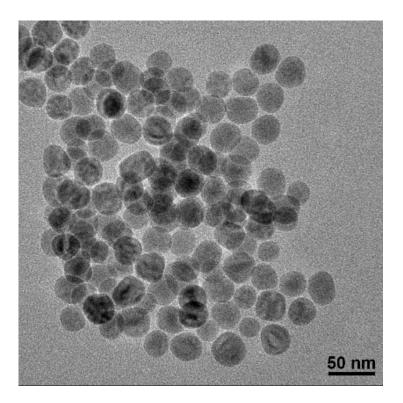
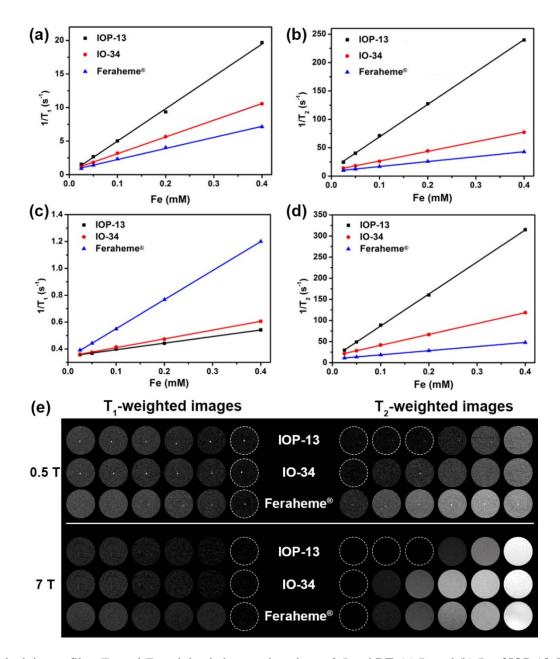

Fig. S2 A large-area TEM image of IOP-13.

Fig. S3 (a) X-ray power diffraction (XRD) patterns of IOP-13, the diffraction patterns are in agreement with the magnetite structure (JCPDS NO. 19-0629). Selected area electron diffraction (SAED) patterns (b) and X-ray photoelectron spectroscopy (XPS) (c) of IOP-13 are also consistent with the crystalline nature of magnetite. The peaks of 711.0 and 724.3 eV are assigned to Fe 2p3/2 and Fe $2p_{1/2}$ of magnetite.

Fig. S4 The stability of IOP-13 in (a-c) phosphate buffer (PBS, $1 \times$, pH = 7.4) and (d-f) 10% (v/v) fetal bovine serum (FBS) solution. The TEM images of IOP-13 after 7 days incubated with PBS (a) and FBS solution (d). The optical photographs of IOP-13 after incubated with PBS (b) and FBS solution (e). The hydrodynamic diameters of IOP-13 in PBS (c) and FBS solution (f) at different time points.

Fig. S5 Field-dependent magnetization curves (M–H) of IOP-13 at 5 K. The *M*_S of IOP-13 and IO-34 are 84.4 and 69.7

emu/g, respectively.

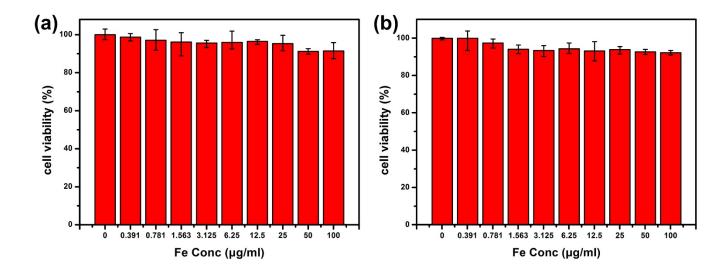

Fig. S6 A TEM image of as-prepared Fe₃O₄ nanoparticles (IO-34).

Fig. S7 Field-dependent magnetization curves (*M*-*H*) of IOP-3 seeds at 300 K and 5 K.

Fig. S8 Relaxivity profiles, T_1 - and T_2 -weighted phantom imaging at 0.5 and 7 T. (a) R_1 and (b) R_2 of IOP-13, IO-34, and Feraheme[®] with different concentrations at 0.5 T, the r_1 and r_2 values were obtained from the slopes of linear fits. (c) R_1 and (d) R_2 of IOP-13, IO-34, and Feraheme[®] with different concentrations at 7 T, the r_1 and r_2 values were obtained from the slopes of linear fits. (e) T_1 - $/T_2$ -weighted phantom imaging of IOP-13, IO-34, and Feraheme[®] at 0.5 and 7 T.

Fig. S9 Cell viability of SMMC-7721 cells incubated with various concentrations of (a) Fe₃O₄ nanoplates (IOP-13) and (b) Fe₃O₄ nanoparticles (IO-34) for 24 h. The results show that the cell viabilities are more than 90% even at the concentration of 100 μ g [Fe] mL⁻¹, indicating that IOP-13 and IO-34 have no appreciable cytotoxicity and excellent biocompatibility.

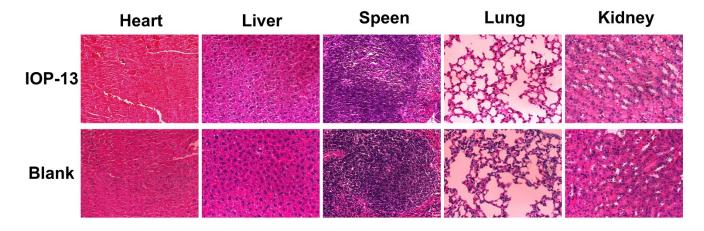
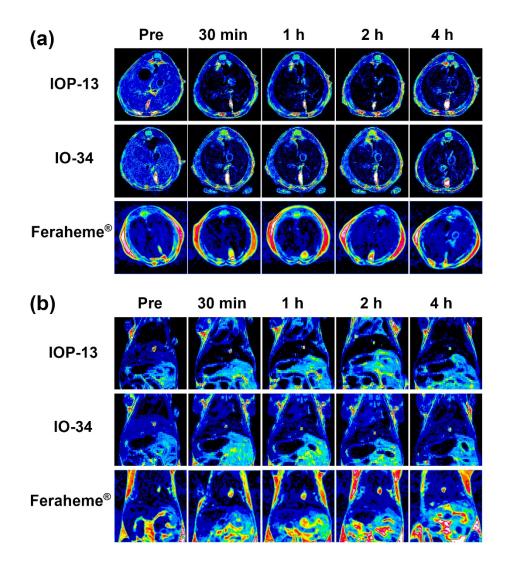
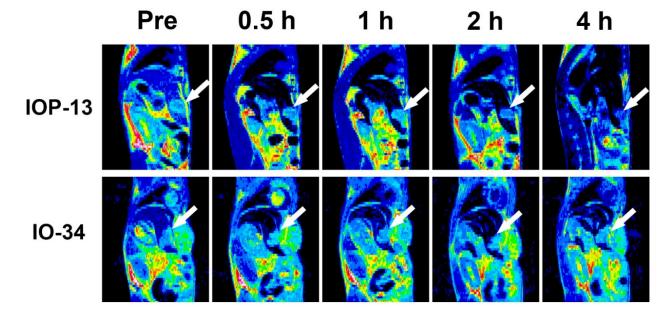




Fig. S10 Hematoxylin and eosin (H&E) staining of heart, liver, spleen, lung, and kidney of the mice after administration of IOP-13 at a dose of 20 mg Fe per kg body weight. The mice of the control group were injected with the same volume of $1 \times PBS$.

Fig. S11 *In vivo* T_2 -weighted MR false-color images of liver at 7.0 T. (a) T_2 -weighted MR false-color images in the transverse plane at 0, 0.5, 1, 2, and 4 h after intravenous injection of IOP-13, IO-34 nanoparticles and Feraheme[®] at a dose of 2 mg [Fe]/kg body weight. (b) T_2 -weighted MR false-color images in the coronal plane at 0, 0.5, 1, 2, and 4 h after intravenous injection of IOP-13 and IO-34 nanoparticles at a dose of 2 mg [Fe]/kg body weight.

Fig. S12 *In vivo* T_2 -weighted MR false-color images of liver tumor at 7.0 T. T_2 -weighted MR false-color images in the sagittal plane at 0, 0.5, 1, 2, and 4 h after intravenous injection of IOP-13 and IO-34 nanoparticles at a dose of 2 mg [Fe]/kg body weight. Arrows indicate the location of tumor.

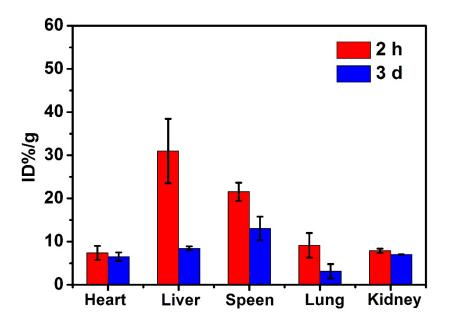


Fig. S13 Biodistribution of IOP-13 in mice organs at 2 h and 3 d after intravenous injection (2 mg Fe /kg body weight,

n = 3/group). The iron contents were measured by ICP-MS and the background was subtracted.

Sample -	$r_1 (\mathrm{mM}^{-1}\mathrm{s}^{-1})$		$r_2 (\mathrm{mM}^{-1}\mathrm{s}^{-1})$		r_2/r_1	
	0.5 T	7 T	0.5 T	7 T	0.5 T	7 T
IOP-13	48.21	0.49	571.21	758.04	11.85	1547.02
IO-34	24.93	0.65	161.02	257.52	6.48	396.18
Feraheme®	16.49	2.16	86.85	98.45	5.27	45.57

Table S1. The r_1 and r_2 values of IOP-13, IO-34, and Feraheme[®] at 0.5 and 7.0 T.