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Hamaker theory

It is known that for objects containing a many atoms, the evalua-
tion of the interactions between them has an high computational
cost, since the calculation of a double sum over all interaction
sites is required. For a pair of NPs, such a summation Usum is
written as1:

Usum = ∑
i∈NP1

∑
j∈NP2

U(ri j) (1)

where U(ri j) is the pairwise potential. If the particles have a sim-
ple geometrical shape, this relation can be generalized to a con-
tinuum approximation as:

Usum =
∫

NP1

∫
NP2

ρ1(r)ρ2(r′)U(r− r′)dV dV ′ (2)

where ρi(r) is the number density of interaction sites belonging to
particles 1 and 2 and V is the volume of the NP. For two spheres
of radius r1 ≤ r2, volume Vi = (4π/3)r3

i placed at a distance r12 >

r1 + r2 and containing particles interacting via a Lennard-Jones
potential, Eq. 2 can be solved by the Hamaker theory2. According
to this approach, the attractive part of the interaction is written
as:

UA = −A12
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where A12 is the Hamaker constant and it takes the value A12 =

4π2ε(ρσ3)2. The repulsive contribution takes the form:

UR =
A12
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By combining Eqs. 3- 4 one can obtain the total interaction. The
Hamaker theory strictly holds for a pair of spherical particles in-
teracting via a pure Lennard-Jones potential, however it consti-
tutes a useful benchmark to test simulation results and can be
applied to NPs of any size and interparticle separations.

Atomistic simulations

We also simulate atomistic Silica NPs of the same size (4 nm of di-
ameter) in order to calculate the PMF in the vacuum: the output
of such simulations (using GROMACS 4.6.33) has been used as
interparticle PMF, to be added to the one calculated by averaging
over forces due to polymer chains. A single atomistic Silica NP
is constituted by 3189 atoms, of which 873 are silicons, 1936 are
oxygens and 380 are hydrogens. In Tab. 1 we report the complete
collection of potential parameters, including the non-bonded po-
tential Vnb(ri j), the bond stretching potential Vb(r) and the bond
angle potential Va(θ), defined as:

Vnb(ri j) = 4ε[(σ/ri j)
12− (σ/ri j)

6]+qiq j/4πε0r2
i j

[1+ ri j(εr f −1)(2εr f +1)(r2
i j/r3

cut)] ; (5)

Vb(r) = (kr/2)(r− r0)
2 ; (6)

Va(θ) = (kθ/2)(θ −θ0)
2 . (7)
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Table 1 Parameters of atomistic Silica NPs

Atom σ (nm) ε(kJ mol−1) q(e)
Si 0.392400 2.510400 1.020
O 0.315400 0.636840 -0.510
H 0.235200 0.092000 0.255

Bond r0 (nm) kr(kJ mol−1 nm−2)

Si-O 0.1630 1 ·107

O-H 0.0950 1 ·107

Bond angle θ0(degrees) kθ (kJ mol−1 rad−2)

O-Si-O 109.47 469.716
Si-O-Si 144.00 209.598
Si-O-H 119.52 228.836

The non bonded potential defined in Eq. 5 is given by two dif-
ferent contributions: the first one is the standard Lennard-Jones
potential, determined by the interaction energy ε and the close-
contact distance σ . The second term is a combination of the
Coulombic interaction between two atoms with charges qi and
q j (ε0 being the vacuum permittivity) and a reaction field4 with a
dielectric constant εr f which, after the cutoff length rcut , is mod-
eled by using the Kirkwood approximation5. The bond stretching
potential Vb(r) (Eq. 6) is defined through the elastic constant kr of
the material and the elongation r respect to the equilibrium po-
sition r0. A similar expression holds for the bond angle potential
Va(θ), defined by Eq. 7, where θ and θ0 are the angular coun-
terparts of r and r0 and kθ is a constant still dependent on the
material properties. Atomistic simulations have been performed
by using the GROMACS 4.6.3 package3, employing a cubic simu-
lation box of side Lb = 22 nm with periodic boundary conditions.
In all simulations we have used a time step of 1 fs and a cutoff of
1.0 nm, while the Coulomb long-range electrostatic interactions
have been treated by means of a generalized reaction field4 with a
dielectric constant εr f = 6.23 and a cutoff of 1.0 nm. The temper-
ature of the systems has been kept constant at T = 590K by using
a Berendsen thermostat6 with a time coupling τ = 0.1 ps. The
procedure for calculating the PMF is similar to that previously de-
scribed: a collection of different starting configuration is built by
using the Packmol program. Values of rmin and rmax are assumed
equal to those implemented for the CG models, hence rmin = 4 nm
and rmax = 10 nm. Then, after a minimization of of 15 ps, equi-
libration runs of 10 ns have been preliminarily produced, finally
averaging the forces over the next 20 ns.

All-atom MD simulation in the vacuum have been assessed
against predictions obtained by using the Hamaker theory. In
this framework the total interaction between two NPs constituted
by a large number of beads is given by a proper summation of
the bead-bead Lennard-Jones interactions. The latter have been
calculated by averaging the atomistic Lennard-Jones parameters
for oxygen and silicon (see Tab. 1) and then using the Lorentz-
Berthelot mixing rules. Results for these atomistic simulations
and the comparison with the theory are reported in Fig. 1: the
force (panel a) is strongly positive for NPs in close contact, then
showing a deep minimum before going to zero for interparticle
distances larger than 1 nm. Simulation results for the PMF (panel

Fig. 1 Force (a) and PMF (b) between a pair of ungrafted atomistic NPs
in the vacuum obtained from atomistic simulations (symbols). In panel
(b) a comparison with the Hamaker theory (full line) is reported.

b) provide the existence of a short-range attractive region with a
well defined minimum of ' -330 kJ/mol for a NP surface-surface
distance of ' 0.2 nm. In addition, we also observe a small max-
imum for an interparticle separation of ' 0.45 nm: this feature
can be explained by taking into account the repulsive contribu-
tion coming from the coulombic potential: due to the presence
of hydrogen atoms on the most external shells, two NPs placed
at a short distance experience a significant electrostatic repul-
sion. This effect is partially offset by the formation of hydrogen
bonds between oxygen and hydrogen atoms belonging to the dif-
ferent NPs. However, for interparticle separations higher than
0.3 nm (see Ref.7), hydrogen bonds can not develop, this giving
rise to the shoulder observed in the PMF. When compared to the
Hamaker theory, the agreement is remarkably good, except for
the presence of the above said shoulder; in particular, the two
approaches quantitatively agree in providing the estimate of the
minimum of the PMF. In order to focus our investigation on the
global behavior of the PMF rather than on surface effects, we
shall henceforth adopt the so obtained Hamaker potential energy
to describe the interaction between two Silica NPs cores.
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Fig. 2 Comparison between two-body and three-body PMF between grafted NPs as a function of their mutual distance for D3 = 4 nm and L f = 1000.
Values of ρg and Lg are in the legends.

Fig. 3 Effect of increasing L f on the two-body PMF between grafted
NPs as a function of their mutual distance for ρg = 0.4 chains/nm2 and
L f = 20. Specific values of L f are in the legends.

Two and three-body potentials of mean force
In Fig. 2 we show the comparison between two and three-body
PMF between grafted NPs with D3 = 4 nm and L f = 1000. As al-
ready observed for L f = 20, the three-body PMF is increasingly re-
pulsive for all grafting densities and grafted chain lengths. Hence,
provided that ρg ≥ 0.5, the three-body contribution to the total
PMF is significantly repulsive for both low (L f = 20) and high

(L f = 1000) molecular weights of the free chains.

In Fig. 3 we investigate the effect of increasing the free chain
length on the two-body PMF between grafted NPs with ρg = 0.4
chains/nm2 and Lg = 20. As already observed for the ungrafted
case (see Fig.6a of the main text), L f does not qualitatively in-
fluence the behavior of the PMF, even if some quantitative dif-
ferences appear: in particular, in the regime of low interparticle
separations (from 0.5 to 3 nm) long free chains (L f = 200) in-
crease the attraction between the NPs, in comparison with short
chains (L f = 20). In both cases the PMF is negative in the almost
whole regime of NP-NP surface distances, suggesting that a phase
separation is expected under these conditions.
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