Supporting information

Langmuir-Blodgett self-assembly of ultrathin graphene quantum dots films with modulated optical properties

Jingyun Wang, ^{1, 2} Hao Yan, ^{1, 3} Zhongqun Liu, ^{1, 2} Zechao Wang, ^{1,4} Haining Gao, ⁵ Zijian Zhang, ^{1,2} Bolun Wang^{1, 2} Nan Xu, ^{1,2} Shaoqiong Zhang, ^{1,3} Xujie Liu, ⁶ Ranran Zhang, ^{1, 2} Xiumei Wang^{1, 2} Guifeng Zhang ⁷ Lingyun Zhao ^{1, 2} Kai Liu, *,^{1, 2} Xiaodan Sun*, ^{1, 2}

- ¹State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
- ² Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
- ³ Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China
- ⁴National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE)
- ⁵Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- ⁶Department of Biomedical Engineering Case Western Reserve University Wickenden 419, 10900 Euclid Avenue Cleveland, OH 44106, USA

⁷Guifeng Zhang, State Key Laboratories of Biochemical Engineering, Institute of Process

Engineering, Chinese Academy of Science, Beijing 100190, China

AFM images of GQDs

Figure S1 AFM images of (a) OH-GQDs, and (b) NH₂-GQDs, respectively.

Detailed characterization of GQDs

As shown in Fig.S2, different functionalized GQDs (OH-GQDs and NH₂-GQDs) was characterized and analyzed by XRD, FTIR, Raman and XPS spectra. For XRD spectra (Fig. S2 (a)), XRD pattern for both of them was characteristic of graphite with a (002) layer spacing, which was identical to that of bulk graphite (3.34 Å). For the FTIR spectra, Fig. S2 (b) showed the FTIR spectrum of the dried OH-GQDs and dried NH₂-GQDs respectively. A strong vibration at 1,590 cm⁻¹ corresponded to the C=C bonds, and another vibration at 3,400 cm⁻¹ was ascribed to the O—H bonds. The vibration of C—OH at 1,270 cm⁻¹ mainly represented the hydroxyl functionalization of the GQDs. Moreover, for NH₂-GQDs, there were two vibration at 3,200 and 1,620 cm⁻¹ corresponding to the N-H bond. For Fig. S2 (c) Raman spectra, it had shown the high graphitization of our GQDs which the ordered G band at 1,582 cm⁻¹ was much stronger than the disordered D band at 1,372 cm⁻¹. XPS spectra of two different GQDs was shown in Fig. S2 (d) and (e). For OH-GQDs, the high-resolution C1s spectrum showed the signals of C=C at 284.8 eV, C—O at 286.4 eV. The high-resolution O1s spectrum showed the signals of -OH bond at 532.1 eV. For the C1s high- resolution spectrum of NH₂-GQDs (Fig. S2 (e)), the signals of C=C, C—O, C=O, C—N were at 284.8 eV, 286.4 eV, 288.4 eV and 285.9 eV respectively. The N1s high-resolution spectrum showed the signal of pyridinic N (N—C) at 398.9eV and $-NH_2$ at 400.1 eV. Besides, high-resolution of O1s spectrum of NH₂-GQDs revealed the signal of -OH at 531.3 eV, O=C at 533.3 eV and a minimum signal of H₂O at 535.5 eV.

Figure S2 Structural characterization of prepared GQDs. (a) XRD pattern. (b) FTIR spectrum. (c) Raman spectrum. (d) XPS spectrum of OH-GQDs. (Left) High-resolution C1s spectrum of OH-GQDs. (Middle) High-resolution O1s spectrum of OH-GQDs.
(Right) (e) XPS analysis of NH2-GQDs. Spectrums from left to right are full spectrum, High-resolution C1s spectrum, High- resolution N1s spectrum and High- resolution

O1s of NH2-GQDs.

Theoretical calculation of GQDs solution and ultra-thin GQDs films bandgap

Accurate E_g estimation of our GQDs was calculated with the general equation as follow:

$$\alpha(hv) \approx B(hv - E_g)^n$$

The n=1/2 was for the direct semiconductor bandgap. So the equation was written as $\alpha(hv) \approx B(hv - E_g)^{1/2}$. Because the $\alpha \propto A$ (absorbance), general formula can be conversed as follow:

$$A(hv)^2 \propto (hv - E_g)$$

Then we plotted $A(hv)^2$ versus E_g . The bandgap value of our GQDs can be obtained by extrapolating the slope to A = 0 as shown in Fig. 2(d).

Excitation/Emission 3D View of full spectrum scanning

Figure S3 Excitation/Emission 3D View of multi-layer GQDs films. (a) Excitation/Emission 3D View of OH-GQDs ultra-thin films. Images from left to right are from the monolayer, tri-layer films and five layers of OH-GQDs. (b) Excitation/Emission 3D View of NH₂-GQDs ultra-thin films. Images from left to right are from the monolayer, tri-layer films and five layers of NH₂-GQDs.