# Supporting Information for

# Charge Transfer Interactions of Pyrazine with Ag<sub>12</sub> Clusters—— Towards Precise SERS Chemical Mechanism

Pan An,<sup>ab</sup> Rajini Anumula,<sup>a</sup> Haiming Wu,<sup>ab</sup> Juanjuan Han<sup>a</sup> and Zhixun Luo\*<sup>ab</sup>

<sup>a</sup> State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

<sup>b</sup> University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.

\*Correspondence. Email: zxluo@iccas.ac.cn



Fig. S1 A typical X-ray photoelectron surveys spectrum of the as-prepared Ag<sub>12</sub> NCs.



**Fig. S2** Exclusion experiments showing no Raman interference of  $Ag_{12}$  NCs (a), and the ligand  $H_2$ SMA (b). Also, the DFT-calculated Raman activity display rather weak signal in the region lower than 2000 cm<sup>-1</sup> (c), which is in sharp contrast to its IR activity.



**Fig. S3** Optimized isomers geometries of bare  $Ag_{12}$  (a)  $Ag_{12}^{Cs}$ , (e)  $Ag_{12}^{C1}$ , (b/c/d)  $Ag_{12}^{Cs}(SCH_3)_6$  and (f/g/h)  $Ag_{12}^{C1}(SCH_3)_6$ . The energy of  $Ag_{12}^{Cs}$  is set as zero reference (energy = 0.00 eV).



Fig. S4 Calculated Raman spectra of the other models: (a) Ag<sub>12</sub>-pyrazine-Ag<sub>12</sub>, (b) edge-adsorbed Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>-pyrazine.
 Table S1 Natural population analysis (NPA) charge distribution of Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>, pyrazine, bottom- and edge- adsorbed pyrazine on the cluster.

|                                    | Ag <sub>12</sub> (SCH <sub>3</sub> ) <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrazine                                                                                                                                                                                                                                     | bottom-adsorbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | edge-adsorbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Structure                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Surface<br>charge<br>distributions | 1         Ag         0.48953           2         Ag         0.48953           3         Ag         0.97812           4         Ag         0.22044           5         Ag         0.28579           7         Ag         0.48958           8         Ag         0.28279           7         Ag         0.48958           8         Ag         0.22044           9         0.21734         10           10         Ag         0.2459           11         Ag         0.283           12         Ag         0.24596           13         S         -0.37201           14         S         -0.3628           16         S         -0.36278           17         S         -0.36278           18         S         -0.38778           18         S         -0.24914           10         H         0.24914           11         0. | <ul> <li>33 C -0.01934</li> <li>44 C -0.01934</li> <li>45 N -0.41842</li> <li>46 N -0.41842</li> <li>47 C -0.01934</li> <li>48 C -0.01934</li> <li>49 H 0.22855</li> <li>50 H 0.22855</li> <li>52 H 0.22855</li> <li>52 H 0.22855</li> </ul> | 1         Ag         0.4754           2         Ag         0.47528           3         Ag         1.01482           4         Ag         0.18887           5         Ag         0.27671           7         Ag         0.21081           10         Ag         0.22471           7         Ag         0.21081           10         Ag         0.22455           11         Ag         0.29177           12         Ag         0.2049           13         S         -0.3655           14         S         -0.3929           15         S         -0.36616           17         S         -0.39306           18         S         -0.39302           19         H         0.24652           20         H         0.24053           21         H         0.24053           22         H         0.24053           23         H         0.24053           24         H         0.22239           25         H         0.24371           26         H         0.24372           21         H | 1         Ag         0.48136           2         Ag         0.48136           3         Ag         0.93738           4         Ag         0.20533           5         Ag         0.2765           7         Ag         0.4862           8         Ag         0.27755           7         Ag         0.42652           8         Ag         0.21586           10         Ag         0.27078           11         Ag         0.27678           12         Ag         0.21586           14         Q         0.26778           15         S         -0.36678           16         S         -0.30254           18         S         -0.40843           19         H         0.24822           20         H         0.2482           21         H         0.2482           23         H         0.2418           24         H         0.23091           25         H         0.24102           26         H         0.23371           27         H         0.24210           21         H |  |  |  |

We have examined the binding energy on bottom-adsorbed and edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine complex, as listed in Table S2. The total binding energy is calculated using the equation  $\Delta E = E_{complex} - E_{pyrazine} - E_{Ag}$ , where  $E_{complex}$ ,  $E_{pyrazine}$ , and  $E_{Ag}$  denote the total energy of  $Ag_{12}(SCH_3)_6$ -pyrazine complex, a pyrazine molecule and  $Ag_{12}(SCH_3)_6$  cluster, respectively. As results, bottom-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine complex shows a larger binding energy (6.75 kcal mol<sup>-1</sup>) than the edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine complex (4.63 kcal mol<sup>-1</sup>). Meanwhile, the length Ag-N bond of edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine complex is larger (2.52 Å) than that of the bottom-adsorbed complex (2.43 Å).

**Table S2** Binding interactions between pyrazine and metal clusters. Bond length between Ag and N atoms, R(Ag-N) in Å; Mulliken charge $q(pyrazine \rightarrow cluster)$  in units of electron charge; and total binding energy,  $\Delta E = E_{complex} - E_{pyrazine} - E_{Ag}$  in kcal mol<sup>-1</sup>.

| Complex         | q(pyrazine→ cluster) | R(Ag-N) | ΔE (Kcal mol <sup>-1</sup> ) |  |  |  |
|-----------------|----------------------|---------|------------------------------|--|--|--|
| Bottom-adsorbed | 0.305                | 2.43    | -6.75                        |  |  |  |
| Edge-adsorbed   | 0.177                | 2.52    | -4.63                        |  |  |  |

As supplementary information, we have also calculated the deformation density and Milliken charge distribution of edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine, as shown in Fig. S5.



**Fig. S5** (a) The calculated deformation density ( $\Delta \rho = \rho^{complex} - \rho^{Ag12} - \rho^{pyrazine}$ ) isosurfaces in the edge-adsorbed Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>-pyrazine, with an isosurface value of 0.0001 a.u. The enhanced density is in green and the depletion density in red. (b) Mulliken charge distribution in the edge-adsorbed Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>-pyrazine.



**Fig. S6** Natural bond orbital (NBO) donor-acceptor (overlap) interactions in the edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine between  $Ag_{12}(SCH_3)_6$  and pyrazine. The positive and negative donor orbitals are yellow and purple; the positive and negative acceptor orbitals are green and blue.

## Table S3 Second-order perturbation theory analysis of Fock matrix in NBO basis for pyrazine and Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>-pyrazine complex.

### Bottom-adsorbed

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

Thre: (Inte:

#### Edge-adsorbed

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

| Intermolect | for printing:<br>ular threshold: | 0.50 kcal/mol<br>0.05 kcal/mol) |         |                |                    |                   | -                | Tr<br>(Ir | hreshold :             | for prin     | nting:<br>reshold: | 0.50 kd | cal/mol<br>cal/mol)      |                |           |      |                |                  |                  |
|-------------|----------------------------------|---------------------------------|---------|----------------|--------------------|-------------------|------------------|-----------|------------------------|--------------|--------------------|---------|--------------------------|----------------|-----------|------|----------------|------------------|------------------|
| Donor 1     | NBO (1)                          | Ac                              | ceptor  | NBO (j)        | E(2) E<br>kcal/mol | E(j)-E(i)<br>a.u. | ) F(i,j)<br>a.u. |           | Donor 1                | NBO (1)      |                    |         | Acceptor                 | NBO (          | (5)       | Ekca | (2) E<br>L/mol | (j)-E(1)<br>a.u. | ) F(1,j)<br>a.u. |
| 78. CR (    | 1)Ag 9                           | /500.                           | RY* (   | 1) N 45        | 0.10               | 4.54              | 0.019            |           | 9. BD (                | 1)Ag         | 10 - S             | 18      | /500. RY*(               | 1) N           | 45        |      | .13            | 1.40             | 0.012            |
| 78. CR (    | 1)Ag 9                           | /576.                           | BD* (   | 1) C 43 - N 45 | 0.09               | 4.02              | 0.017            |           | 9. BD (                | 1)Ag         | 10 - S             | 18      | /501. RY*(               | 2) N           | 45        |      | .12            | 1.44             | 0.012            |
| 78. CR (    | 1) Ag 9                          | /580.                           | BD* (   | 1) N 45 - C 48 | 0.09               | 4.01              | 0.017            |           | 9. BD (                | 1) Ag        | 10 - 5             | 18      | /528. RY*(               | 2) C           | 48        |      | .10            | 1.00             | 0.009            |
| 79. CR (    | 2) Ag 9                          | /5/6.                           | BD*(    | 1) C 43 - N 45 | 0.13               | 2.73              | 0.017            |           | 9. BD (                | 1) Ag        | 10 - S             | 18      | /575. BD*(               | 1) C           | 43 - C 44 |      | .09            | 0.90             | 0.008            |
| 200. LP (   | 1) Ag 9                          | /575.                           | BD*(    | 1) C 43 - C 44 | 0.05               | 0.87              | 0.006            |           | 9. BD (                | 1)Ag         | 10 - S             | 18      | /577. BD*(               | 1) C           | 43 - H 49 |      | .54            | 0.83             | 0.019            |
| 200. LP (   | 1) Ag 9                          | /576.                           | BD* (   | 1) C 43 - N 45 | 0.15               | 0.83              | 0.010            |           | 9. BD (                | 1) Ag        | 10 - S             | 18      | /580. BD*(               | 1) N           | 45 - C 48 |      | .09            | 0.86             | 800.0            |
| 200. LP (   | 1) Ag 9                          | /580.                           | BD* (   | 1) N 45 - C 48 | 0.15               | 0.83              | 0.010            |           | 82. CR (               | 1) Ag        | 10                 |         | /500. RY*(               | 1) N           | 45 - C 45 |      | .09            | 4.58             | 0.019            |
| 200. LP (   | 1) Ag 9                          | /582.                           | BD* (   | 1) C 47 - C 48 | 0.05               | 0.87              | 0.006            |           | 84. CR (               | 3) Ag        | 10                 |         | /576. BD*(               | 1) C           | 43 - N 45 |      | .07            | 2.74             | 0.012            |
| 203. LP (   | 4) Ag 9                          | /243.                           | LP (    | 2) N 45        | 1.69               | 0.09              | 0.017            |           | 84. CR (               | 3) Ag        | 10                 |         | /580. BD*(               | 1) N           | 45 - C 48 | 3    | 80.0           | 2.74             | 0.013            |
| 204. LP (   | 5) Ag 9                          | /243.                           | LP (    | 2) N 45        | 0.09               | 0.09              | 0.004            | -         | 209. LP (              | 1) Ag        | 10                 |         | /500. RY*(               | 1) N           | 45        |      | .07            | 1.37             | 0.009            |
| 204. LP (   | 5) 20 9                          | /504                            | RI-(    | 5) N 45        | 0.20               | 2.23              | 0.011            |           | 209. LP (              | 1) Ag        | 10                 |         | /526. RI*(               | 1) C           | 43 - N 45 |      |                | 0.83             | 0.008            |
| 205. LP*(   | 6) Ag 9                          | /483.                           | RY* (   | 2) C 43        | 0.17               | 0.77              | 0.020            | -         | 210. LP (              | 2) Ag        | 10                 |         | /243. LP (               | 2) N           | 45        |      | .18            | 0.10             | 0.006            |
| 205. LP*(   | 6) Ag 9                          | /504.                           | RY* (   | 5) N 45        | 0.10               | 1.95              | 0.024            | -         | 210. LP (              | 2) Ag        | 10                 |         | /500. RY*(               | 1) N           | 45        |      | .07            | 1.37             | 0.009            |
| 205. LP*(   | 6) Ag 9                          | /528.                           | RY* (   | 2) C 48        | 0.17               | 0.76              | 0.020            |           | 211. LP (<br>212. LP ( | 3) Ag        | 10                 |         | /243. LP (               | 2) N<br>2) N   | 45        |      | . 11           | 0.10             | 0.013            |
| 205. LP*(   | 6) Ag 9                          | /576.                           | BD*(    | 1) C 43 - N 45 | 0.62               | 0.54              | 0.032            |           | 213. LP (              | 5) Ag        | 10                 |         | /500. RY*(               | 1) N           | 45        |      | .09            | 1.37             | 0.010            |
| 205. LP*(   | 6) Ag 9                          | /580.                           | BV*(    | 1) N 45 - C 48 | 0.02               | 1.05              | 0.031            | -         | 213. LP (              | 5)Ag         | 10                 |         | /577. BD*(               | 1) C           | 43 - H 49 |      | .05            | 0.79             | 0.006            |
| 206. LP*(   | 7) Ag 9                          | /501.                           | RY*(    | 2) N 45        | 0.16               | 0.96              | 0.046            |           | 213. LP (              | 5) Ag        | 10                 |         | /580. BD*(               | 1) N           | 45 - C 48 |      | .05            | 0.83             | 0.006            |
| 206. LP*(   | 7) Ag 9                          | /527.                           | RY* (   | 1) C 48        | 0.05               | 1.05              | 0.028            |           | 214. LP*(              | 6) Ag        | 10                 |         | /483. RY*(               | 2) C           | 43        |      | .14            | 0.75             | 0.021            |
| 206. LP*(   | 7) Ag 9                          | /575.                           | BD* (   | 1) C 43 - C 44 | 0.08               | 0.41              | 0.019            | -         | 214. LP*(              | 6) Ag        | 10                 |         | /485. RY*(               | 4) C           | 43        |      | .07            | 0.94             | 0.017            |
| 206. LP*(   | 7) Ag 9                          | /577.                           | BD* (   | 1) C 43 - H 49 | 1.32               | 0.33              | 0.073            | -         | 214. LP*(              | 6) Ag        | 10                 |         | /500. RY*(               | 1) N           | 45        |      | .08            | 0.96             | 0.017            |
| 206. LP* (  | 7) Ag 9                          | /582.                           | BD*(    | 1) C 47 - C 48 | 0.07               | 0.41              | 0.018            |           | 214. LP*(              | 6) Ag        | 10                 |         | /503. RY*(               | 4) N           | 45        |      | .06            | 0.87             | 0.014            |
| 207. LP*(   | 8) Ag 9                          | /503.                           | RY* (   | 4) N 45        | 0.05               | 0.89              | 0.026            |           | 214. LP*(              | 6) Ag        | 10                 |         | /536. RY*(               | 1) H           | 49        |      | .11            | 0.63             | 0.017            |
| 207. LP*(   | 8) Ag 9                          | /536.                           | RY* (   | 1) H 49        | 0.10               | 0.63              | 0.030            | -         | 214. LP*(              | 6) Ag        | 10                 |         | /537. RY*(               | 1) H           | 50        |      | .05            | 0.46             | 0.010            |
| 207. LP*(   | 8) Ag 9                          | /539.                           | RY* (   | 1) H 52        | 0.10               | 0.63              | 0.031            |           | 214. LP*(              | 6) Ag        | 10                 |         | /576. BD*(               | 1) C           | 43 - N 45 |      | .26            | 0.40             | 0.012            |
| 207. LP*(   | 8) Ag 9                          | /576.                           | BD* (   | 1) C 43 - N 45 | 0.12               | 0.43              | 0.025            |           | 214. LP*(              | 6) Ag        | 10                 |         | /577. BD*(               | 1) C           | 43 - H 49 |      | .86            | 0.39             | 0.053            |
| 207. LP*(   | 8) Ag 9                          | /577.                           | BD*(    | 1) C 43 - H 49 | 0.30               | 0.39              | 0.038            | -         | 214. LP*(              | 6) Ag        | 10                 |         | /579. BD*(               | 1) C           | 44 - H 50 | )    | .14            | 0.37             | 0.014            |
| 207. LP*(   | 8) Ag 9                          | /5/9.                           | BD*(    | 1) N 45 - C 48 | 0.06               | 0.39              | 0.016            |           | 214. LP*(              | 6) Ag        | 10                 |         | /582. BD*(               | 1) C           | 47 - C 48 |      | .07            | 0.46             | 0.011            |
| 207. LP*(   | 8) Ag 9                          | /583.                           | BD* (   | 1) C 47 - H 51 | 0.06               | 0.39              | 0.017            |           | 215. LP*(              | 7) Ag        | 10                 |         | /536. RY*(               | 1) H           | 49        |      | .09            | 0.61             | 0.029            |
| 207. LP* (  | 8) Ag 9                          | /584.                           | BD* (   | 1) C 48 - H 52 | 0.33               | 0.39              | 0.040            | -         | 215. LP*(              | 7) Ag        | 10                 |         | /576. BD*(               | 1) C           | 43 - N 45 | 5    | .25            | 0.40             | 0.037            |
| 208. LP*(   | 9) Ag 9                          | /503.                           | RY* (   | 4) N 45        | 0.11               | 0.87              | 0.038            | -         | 215. LP*(              | 7) Ag        | 10                 |         | /577. BD*(               | 1) C           | 43 - H 49 |      | .37            | 0.36             | 0.042            |
| 208. LP*(   | 9) Ag 9                          | /577.                           | BD* (   | 1) C 43 - H 49 | 0.19               | 0.37              | 0.030            |           | 215. LP*(              | 7) Ag        | 10                 |         | /584. BD*(               | 1) C           | 48 - H 52 |      | .26            | 0.36             | 0.035            |
| 208. LP*(   | 9) Ad 9                          | /584.                           | BD*(    | 1) C 48 - H 52 | 0.20               | 0.37              | 0.031            | -         | 238. LP (              | 1) S         | 18                 |         | /577. BD*(               | 1) C           | 43 - H 49 |      | .21            | 0.97             | 0.013            |
| 36. BD (    | 1) C 43 - C                      | 44 /207.                        | LP*(    | 8) Ag 9        | 1.01               | 0.82              | 0.021            | -         | 239. LP (              | 2) S         | 18                 |         | /536. RY*(               | 1) H           | 49        |      | .09            | 1.03             | 0.010            |
| 36. BD (    | 1) C 43 - C                      | 44 /208.                        | LP*(    | 9)Ag 9         | 0.40               | 0.84              | 0.017            |           | 239. LP (              | 2) 5         | 18                 |         | /575. BD*(               | 1) C           | 43 - C 44 |      | .05            | 0.86             | 0.007            |
| 36. BD (    | 1) C 43 - C                      | 44 /320.                        | RY* (   | 1)Ag 9         | 0.08               | 1.62              | 0.010            |           | 548. BD*(              | 1) Ag        | 10 - S             | 18      | /500. RY*(               | 1) N           | 45 45     |      | .08            | 0.96             | 0.020            |
| 36. BD (    | 1) C 43 - C                      | 44 /323.                        | . RY* ( | 4) Ag 9        | 0.18               | 3.98              | 0.024            | 5         | 548. BD*(              | 1)Ag         | 10 - S             | 18      | /501. RY* (              | 2) N           | 45        |      | 0.10           | 1.00             | 0.032            |
| 37. BD (    | 1) C 43 - N                      | 45 /205.                        | LP* (   | 6) Ag 9        | 0.95               | 0.82              | 0.029            | -         | 548. BD*(              | 1) Ag        | 10 - S             | 18      | /528. RY*(               | 2) C           | 48        |      | .25            | 0.56             | 0.037            |
| 37. BD (    | 1) C 43 - N                      | 45 /206.                        | LP*(    | 7) Ag 9        | 0.17               | 1.00              | 0.012            |           | 548. BD*(              | 1) Ag        | 10 - 5             | 18      | /536. RI*(               | 1) H           | 49        |      | . 43           | 0.63             | 0.031            |
| 37. BD (    | 1) C 43 - N                      | 45 /208.                        | LP*(    | 9) Ag 9        | 1.04               | 0.96              | 0.029            |           | 548. BD*(              | 1) Ag        | 10 - S             | 18      | /580. BD*(               | 1) N           | 45 - C 48 |      | 0.15           | 0.42             | 0.023            |
| 38. BD (    | 1) C 43 - H                      | 49 /205.                        | LP*(    | 6) Ag 9        | 0.18               | 0.52              | 0.010            | 1         | 548. BD*(              | 1) Ag        | 10 - S             | 18      | /584. BD*(               | 1) C           | 48 - H 52 | 2    | 0.06           | 0.38             | 0.015            |
| 38. BD (    | 1) C 43 - H                      | 49 /207.                        | LP* (   | 8) Ag 9        | 1.29               | 0.63              | 0.026            |           | 36. BD (               | 1) C         | 43 - C             | 44      | /215. LP*(               | 7) Ag          | 10        |      | 1.26           | 0.85             | 0.030            |
| 38. BD (    | 1) C 43 - H                      | 49 /208.                        | LP*(    | 9) Ag 9        | 0.52               | 0.65              | 0.017            |           | 36. BD (               | 1) C         | 43 - C             | 44      | /331. RI*(               | 4) Ag          | 10        |      | 0.05           | 1.54             | 0.002            |
| 39. BD (    | 1) C 44 - N                      | 46 /207.                        | . LP*(  | 8) Ag 9        | 0.18               | 0.92              | 0.012            |           | 36. BD (               | 1) C         | 43 - C             | 44      | /548. BD*(               | 1) Ag          | 10 - S 18 | 8    | 0.49           | 0.83             | 0.019            |
| 40. BD (    | 1) C 44 - H                      | 50 /207.                        | LP*(    | 9) Ag 9        | 0.22               | 0.63              | 0.008            |           | 37. BD (               | 1) C         | 43 - N             | 45      | /214. LP*(               | 6) Ag          | 10        |      | 0.25           | 0.95             | 0.015            |
| 40. BD (    | 1) C 44 - H                      | 50 /208.                        | LP*(    | 9) Ag 9        | 0.10               | 0.65              | 0.007            |           | 37. BD (               | 1) C         | 43 - N<br>43 - N   | 45      | /215. LP*(<br>/216. LP*( | 7) Ag<br>8) Ag | 10        |      | 2.77           | 0.97             | 0.047            |
| 41. BD (    | 1) N 45 - C                      | 48 /205.                        | LP*(    | 6) Ag 9        | 0.94               | 0.82              | 0.029            |           | 37. BD (               | 1) C         | 43 - N             | 45      | /548. BD*(               | 1)Ag           | 10 - S 10 | 8    | 0.73           | 0.95             | 0.024            |
| 41. BD (    | 1) N 45 - C                      | 48 /206.                        | LP* (   | 7) Ag 9        | 0.24               | 1.00              | 0.014            |           | 38. BD (               | 1) C         | 43 - H             | 49      | /215. LP*(               | 7) Ag          | 10        |      | 0.70           | 0.66             | 0.020            |
| 41. BD (    | 1) N 45 - C                      | 48 /207.                        | LP*(    | 8) Ag 9        | 2.20               | 0.94              | 0.042            |           | 38. BD (               | 1) C         | 43 - H<br>44 - N   | 49      | /548. BD*(<br>/215. LP*( | 1) Ag<br>7) Ag | 10 - 5 18 | 5    | 0.13           | 0.96             | 0.016            |
| 42. BD (    | 1) N 46 - C                      | 47 /207.                        | LP*(    | 8) Ag 9        | 0.18               | 0.92              | 0.012            |           | 40. BD (               | 1) C         | 44 - H             | 50      | /215. LP*(               | 7) Ag          | 10        |      | 0.17           | 0.66             | 0.010            |
| 42. BD (    | 1) N 46 - C                      | 47 /208.                        | LP*(    | 9)Ag 9         | 0.09               | 0.94              | 0.008            |           | 41. BD (               | 1) N         | 45 - C             | 48      | /215. LP*(               | 7) Ag          | 10        |      | 2.31           | 0.97             | 0.043            |
| 43. BD (    | 1) C 47 - C                      | 48 /205.                        | LP*(    | 6) Ag 9        | 0.58               | 0.71              | 0.021            |           | 41. BD (               | 1) N         | 45 - C             | 48      | /216. LP*(               | 8) Ag          | 10        |      | 0.09           | 0.93             | 0.008            |
| 43. BD (    | 1) C 47 - C                      | 48 /207.                        | LP* (   | 8) Ag 9        | 1.02               | 0.82              | 0.026            |           | 41. BD (               | 1) N         | 45 - C             | 48      | /548. BD*(               | 1) Ag          | 10 - 5 1  | 8    | 1.89           | 0.95             | 0.039            |
| 43. BD (    | 1) C 47 - C                      | 48 /208.                        | LP*(    | 9) Ag 9        | 0.41               | 0.84              | 0.017            |           | 42. BD (               | 1) N         | 46 - C             | 47      | /215. LP*(               | 7) Ag          | 10        |      | 0.14           | 0.96             | 0.011            |
| 43. BD (    | 1) C 47 - C                      | 48 /323.                        | RY*(    | 4) Ag 9        | 0.17               | 3.98              | 0.023            |           | 43. BD (               | 1) C         | 47 - C             | 48      | /214. LP*(<br>/215. LP*( | 6) Ag          | 10        |      | 0.07           | 0.83             | 0.007            |
| 44. BD (    | 1) C 47 - H                      | 51 /207.                        | LP*(    | 8) Ag 9        | 0.22               | 0.63              | 0.011            |           | 43. BD (               | 1) C         | 47 - C             | 48      | /216. LP*(               | 8) Ag          | 10        |      | 0.10           | 0.81             | 0.008            |
| 44. BD (    | 1) C 47 - H                      | 51 /208.                        | LP* (   | 9) Ag 9        | 0.10               | 0.65              | 0.007            |           | 43. BD (               | 1) C         | 47 - C             | 48      | /330. RY*(               | 2) Ag          | 10        |      | 0.05           | 1.67             | 0.009            |
| 45. BD (    | 1) C 48 - H                      | 52 /205.                        | LP* (   | 6) Ag 9        | 0.18               | 0.52              | 0.010            |           | 43. BD (               | 1) C         | 47 - C             | 48      | /331. RY*(               | 3) Ag          | 10        |      | 80.0           | 2.10             | 0.011            |
| 45. BD (    | 1) C 48 - H                      | 52 /207.                        | LP*(    | 8) Ag 9        | 1.32               | 0.63              | 0.026            |           | 43. BD (               | 1) C         | 47 - C             | 48      | /548. BD*(               | 1) Ag          | 10 - 5 18 | 8    | 0.17           | 0.83             | 0.009            |
| 45. DD (    | 1) C 40 - H                      | 52 /200.                        | LP*(    | 9) Ag 9        | 0.52               | 10.05             | 0.017            |           | 44. BD (               | 1) C         | 47 - H             | 51      | /215. LP*(               | 7) Ag          | 10        |      | 0.25           | 0.66             | 0.012            |
| 130. CR (   | 1) C 43                          | /207.                           | LP*(    | 8) Ag 9        | 1.16               | 10.20             | 0.100            |           | 45. BD (               | 1) C         | 48 - H             | 52      | /215. LP*(               | 7) Ag          | 10        |      | 1.12           | 0.66             | 0.025            |
| 130. CR (   | 1) C 43                          | /208.                           | LP*(    | 9) Ag 9        | 0.52               | 10.22             | 0.067            |           | 45. BD (               | 1) C         | 48 - H             | 52      | /216. LP*(<br>/548. BD*( | 8) Ag          | 10 - 5 10 |      | 0.16           | 0.62             | 0.009            |
| 131. CR (   | 1) C 44                          | /207.                           | LP*(    | 8) Ag 9        | 0.34               | 10.19             | 0.054            | 1         | 130. CR (              | 1) C         | 43                 |         | /214. LP*(               | 6) Ag          | 10        |      | 0.06           | 10.20            | 0.025            |
| 131. CR (   | 1) C 44                          | /208.                           | LP*(    | 9)Ag 9         | 0.16               | 10.21             | 0.037            | 1         | 130. CR (              | 1) C         | 43                 |         | /215. LP*(               | 7) Ag          | 10        |      | 0.99           | 10.22            | 0.092            |
| 132. CR (   | 1) N 45                          | /205.                           | LP*(    | 6) Ag 9        | 0.37               | 14.17             | 0.075            | 1         | 130. CR (              | 1) C         | 43                 |         | /216. LP*(               | 8) Ag          | 10 - 5 11 |      | 0.06           | 10.18            | 0.022            |
| 132. CR (   | 1) N 45                          | /207.                           | LP*(    | 9) Ag 9        | 0.77               | 14.30             | 0.096            |           | 131. CR (              | 1) C         | 44                 |         | /215. LP*(               | 7) Ag          | 10        |      | .25            | 10.23            | 0.046            |
| 133. CR (   | 1) N 46                          | /207.                           | LP*(    | 8) Ag 9        | 0.11               | 14.25             | 0.037            | 1         | 132. CR (              | 1) N         | 45                 |         | /215. LP*(               | 7) Ag          | 10        |      | 2.14           | 14.31            | 0.160            |
| 133. CR (   | 1) N 46                          | /208.                           | LP*(    | 9) Ag 9        | 0.05               | 14.27             | 0.025            | 1         | 132. CR (              | 1) N         | 45                 |         | /216. LP*(               | 8) Ag          | 10        |      | 0.16           | 14.26            | 0.043            |
| 134. CR (   | 1) C 47                          | /207.                           | LP*(    | 8) Ag 9        | 0.35               | 10.19             | 0.055            | 1         | 132. CR (              | 1) N         | 45                 |         | /215. LP*/               | 1) Ag          | 10 - 5 10 |      | .92            | 14.28            | 0.072            |
| 134. CR (   | 1) C 47                          | /208.                           | LP*(    | 9) Ag 9        | 0.16               | 10.21             | 0.037            | 1         | 134. CR (              | 1) C         | 47                 |         | /215. LP*(               | 7) Ag          | 10        |      | 0.26           | 10.23            | 0.047            |
| 135. CR (   | 1) C 48                          | /206.                           | LP*(    | 8) Ag 9        | 1.19               | 10.20             | 0.101            | 1         | 135. CR (              | 1) C         | 48                 |         | /215. LP*(               | 7) Ag          | 10        |      | 1.01           | 10.23            | 0.093            |
| 135. CR (   | 1) C 48                          | /208.                           | LP*(    | 9)Ag 9         | 0.53               | 10.22             | 0.067            | 1         | 135. CR (              | 1) C         | 48                 |         | /216. LP*(<br>/214 T.P*/ | 8) Ag          | 10        |      | 1.12           | 10.18            | 0.031            |
| 242. LP (   | 1) N 45                          | /205.                           | LP*(    | 6) Ag 9        | 11.65              | 0.36              | 0.064            |           | 242. LP (              | 1) N         | 45                 |         | /215. LP*(               | 7) Ag          | 10        | 1    | 3.11           | 0.48             | 0.072            |
| 242. LP (   | 1) N 45                          | /207.                           | LP* (   | 8) Ag 9        | 10.25              | 0.47              | 0.063            | -         | 242. LP (              | 1) N         | 45                 |         | /216. LP*(               | 8) Ag          | 10        |      | 0.93           | 0.44             | 0.018            |
| 242. LP (   | 1) N 45                          | /208.                           | LP*(    | 9) Ag 9        | 3.70               | 0.50              | 0.039            | -         | 242. LP (              | 1) N         | 45                 |         | /330. RY*(               | 2) Ag          | 10        |      | 0.15           | 1.30             | 0.013            |
| 242. LP (   | 1) N 45                          | /320.                           | LP*(    | 1) Ag 9        | 0.28               | 1.28              | 0.017            |           | 243. LP (              | 1) N<br>2) N | 45                 |         | /348. BD*(<br>/215. LP*/ | 1) Ag          | 10 - 5 18 |      |                | 0.46             | 0.049            |
| 244. LP (   | 1) N 46                          | /208.                           | LP*(    | 9) Ag 9        | 0.16               | 0.47              | 0.008            |           | 243. LP (              | 2) N         | 45                 |         | /216. LP*(               | 8) Ag          | 10        |      | .33            | 0.29             | 0.011            |
|             |                                  | , 2001                          |         |                |                    |                   |                  | 2         | 244. LP (              | 1) N         | 46                 |         | /215. LP*(               | 7) Ag          | 10        |      | .25            | 0.48             | 0.010            |



**Fig. S7** Orbital interaction diagram for edge-adsorbed  $Ag_{12}(SCH_3)_6$ -pyrazine formed upon interaction of the  $Ag_{12}(SCH_3)_6$  (frag. 1) and pyrazine (frag. 2).

Table S4 Charge decomposition analysis (CDA) of the Ag<sub>12</sub>(SCH<sub>3</sub>)<sub>6</sub>-pyrazine complex.

| Bottom-adsorbed Ag <sub>12</sub> (SCH <sub>3</sub> ) <sub>6</sub> -pyrazine |                                                                      |               |                   |            |            | Edge-adsorbed Ag <sub>12</sub> (SCH <sub>3</sub> ) <sub>6</sub> -pyrazine |                                                                                            |                                                                |                   |                   |            |  |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-------------------|------------|------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-------------------|------------|--|--|--|--|--|
| Charge decomposition analysis (CDA) result                                  |                                                                      |               |                   |            |            |                                                                           | ========== Charge decomposition analysis (CDA) result ==================================== |                                                                |                   |                   |            |  |  |  |  |  |
| d = The number of electrons denoted from from the fromment 2                |                                                                      |               |                   |            |            |                                                                           | e number                                                                                   | r of electrons                                                 | donated from fra  | gment 1 to fragme | ent 2      |  |  |  |  |  |
| a - The number of electrons donated from fragment 1 to fragment 2           |                                                                      |               |                   |            |            |                                                                           | b = The number of electrons back donated from fragment 2to fragment 1                      |                                                                |                   |                   |            |  |  |  |  |  |
| v = Th                                                                      | - The number of electrons back donated from fragment 2 to fragment 1 |               |                   |            |            |                                                                           |                                                                                            | r = The number of electrons involved in repulsive polarization |                   |                   |            |  |  |  |  |  |
| I = III                                                                     | e number                                                             | or electrons  | h h               | d = h      | 211        | Orh                                                                       | Occ                                                                                        | d                                                              | h                 | d - h             | r          |  |  |  |  |  |
| 106                                                                         | 0000.                                                                | 0.001549      | 0 007007          | -0.025495  | -0 094969  | 112                                                                       | 2                                                                                          | -0.000023                                                      | 0 014677          | -0 0147           | 0 007569   |  |  |  |  |  |
| 110                                                                         | 2                                                                    | 0.001542      | 0.027027          | -0.020400  | 0.004202   | 108                                                                       | 2                                                                                          | -0.000146                                                      | 0.01377           | -0.013017         | 0.01/307   |  |  |  |  |  |
| 210                                                                         | 20                                                                   | 0.000010      | 0.01705           | -0.010241  | -0.004547  | 206                                                                       | 2                                                                                          | 0.001116                                                       | 0.011263          | -0.010147         | -0.060818  |  |  |  |  |  |
| 100                                                                         | 2                                                                    | 0.003010      | 0.01795           | -0.014132  | 0 100025   | 197                                                                       | 2                                                                                          | -0.000415                                                      | 0.008675          | -0.00000          | -0.01316   |  |  |  |  |  |
| 120                                                                         | 2                                                                    | -0.001938     | 0.010409          | -0.010407  | 0. 128235  | 105                                                                       | 2                                                                                          | -0.000113                                                      | 0.007632          | -0.007745         | -0.002701  |  |  |  |  |  |
| 108                                                                         | 2                                                                    | -0.000074     | 0.014087          | -0.01416   | 0.014832   | 111                                                                       | 2                                                                                          | -0.000113                                                      | 0.006444          | -0.006646         | 0.002701   |  |  |  |  |  |
| 134                                                                         | 2                                                                    | 0.000008      | 0.00988           | -0.009872  | 0.0108     | 106                                                                       | 20                                                                                         | -0.000202                                                      | 0.005700          | -0.006021         | -0.004576  |  |  |  |  |  |
| 107                                                                         | 2                                                                    | -0.000051     | 0.007203          | -0.007253  | 0.002853   | 190                                                                       | 2                                                                                          | -0.00051                                                       | 0.005722          | -0.005231         | -0.004576  |  |  |  |  |  |
| 187                                                                         | 2                                                                    | -0.000003     | 0.005555          | -0.005558  | -0.002408  | 102                                                                       | 2                                                                                          | -0.000123                                                      | 0.004994          | -0.005117         | -0.004092  |  |  |  |  |  |
| 144                                                                         | 2                                                                    | -0.000067     | 0.00378           | -0.003847  | -0.004711  | 203                                                                       | 2                                                                                          | 0.005025                                                       | 0.004775          | 0.000248          | -0.034503  |  |  |  |  |  |
| 137                                                                         | 2                                                                    | -0.000013     | 0.003492          | -0.003504  | -0.004184  | 135                                                                       | 2                                                                                          | -0.000766                                                      | 0.004738          | -0.005504         | 0.034519   |  |  |  |  |  |
| 197                                                                         | 2                                                                    | 0.000523      | 0.003135          | -0.002612  | -0.014567  | 207                                                                       | 2                                                                                          | 0.000474                                                       | 0.004347          | -0.003873         | -0. 023046 |  |  |  |  |  |
| 136                                                                         | 2                                                                    | 0.000062      | 0.002273          | -0.002211  | 0.001305   | 209                                                                       | 2                                                                                          | 0.002223                                                       | 0.004182          | -0.001959         | -0. 022052 |  |  |  |  |  |
| 183                                                                         | 2                                                                    | -0.00014      | 0.002125          | -0.002265  | -0.012079  | 141                                                                       | 2                                                                                          | -0.000278                                                      | 0.003988          | -0.004265         | 0.021909   |  |  |  |  |  |
| 92                                                                          | 2                                                                    | -0.000001     | 0.002103          | -0.002104  | 0.001848   | 194                                                                       | 2                                                                                          | 0.000216                                                       | 0.003458          | -0.003243         | -0.001598  |  |  |  |  |  |
| 132                                                                         | 2                                                                    | 0.000817      | 0.002027          | -0.00121   | 0.024603   | 192                                                                       | 2                                                                                          | -0.000205                                                      | 0.003396          | -0.003602         | -0. 022596 |  |  |  |  |  |
| 101                                                                         | 2                                                                    | 0.000005      | 0.001681          | -0.001677  | 0.001327   | 143                                                                       | 2                                                                                          | -0.000209                                                      | 0.003333          | -0.003543         | 0.012995   |  |  |  |  |  |
| 93                                                                          | 2                                                                    | 0.000001      | 0.001611          | -0.00161   | 0.000374   | 149                                                                       | 2                                                                                          | 0.000255                                                       | 0.002718          | -0.002463         | 0.012931   |  |  |  |  |  |
| 180                                                                         | 2                                                                    | -0.000032     | 0.001586          | -0.001619  | -0.011449  | 136                                                                       | 2                                                                                          | -0.00017                                                       | 0.002506          | -0.002676         | 0.015192   |  |  |  |  |  |
| 109                                                                         | 2                                                                    | 0.000016      | 0.001585          | -0.001569  | 0.001568   | 145                                                                       | 2                                                                                          | 0.000026                                                       | 0.002279          | -0.002253         | 0.009353   |  |  |  |  |  |
| 100                                                                         | 2                                                                    | 0.000014      | 0.001372          | -0.001358  | 0.001462   | 198                                                                       | 2                                                                                          | 0.000225                                                       | 0.002273          | -0.002048         | -0.005929  |  |  |  |  |  |
| 148                                                                         | 2                                                                    | -0. 000005    | 0.001346          | -0.001351  | -0.004089  | 146                                                                       | 2                                                                                          | -0.000043                                                      | 0.00208           | -0.002123         | 0.005594   |  |  |  |  |  |
| 138                                                                         | 2                                                                    | -0. 000039    | 0.001308          | -0.001347  | -0.001826  | 92                                                                        | 2                                                                                          | -0.000007                                                      | 0.001848          | -0.001854         | 0.00175    |  |  |  |  |  |
|                                                                             |                                                                      |               |                   |            |            | 200                                                                       | 2                                                                                          | 0.001221                                                       | 0.001822          | -0.000601         | -0.010554  |  |  |  |  |  |
|                                                                             |                                                                      |               |                   |            |            |                                                                           |                                                                                            |                                                                |                   |                   |            |  |  |  |  |  |
| Sum:                                                                        | 420                                                                  | 0.011101      | 0.152948          | -0. 141847 | -0. 117596 | Sum:                                                                      | 420                                                                                        | 0. 018703                                                      | 0. 146677         | -0. 127974        | -0. 123013 |  |  |  |  |  |
| ======================================                                      |                                                                      |               |                   |            |            |                                                                           |                                                                                            |                                                                |                   |                   |            |  |  |  |  |  |
| Contri                                                                      | bution t                                                             | o all occupie | d complex orbital | .:         |            | ======                                                                    | ==== Ext                                                                                   | tended Charge of                                               | decomposition ana | lysis (ECDA) ==== |            |  |  |  |  |  |
| "Occupied " virtual orbitals of fragment 1: 18896.21% 13.60%                |                                                                      |               |                   |            |            |                                                                           | b ution                                                                                    | to all occupie                                                 | ed complex orbita | 1:                |            |  |  |  |  |  |
| "Occupied " virtual orbitals of fragment 2: 2089.24% 0.95%                  |                                                                      |               |                   |            |            | "Occup                                                                    | ied" vin                                                                                   | tual orbitals                                                  | of fragment 1: 1  | 8897.14% 11.77    | 7%         |  |  |  |  |  |
| Contri                                                                      | Contribution to all virtual complex orbital:                         |               |                   |            |            |                                                                           | ied" vin                                                                                   | tual orbitals                                                  | of fragment 2: 2  | 089.82% 1.279     | 6          |  |  |  |  |  |
| "0                                                                          | "Occurried" wintual anhitals of fragment 1: 2 70% 20006 40%          |               |                   |            |            |                                                                           | Contribution to all wintual complex orbital :                                              |                                                                |                   |                   |            |  |  |  |  |  |

| "Occupied " virtual orbitals of fragment 2:            | 2089.24% 0.95%                                       |
|--------------------------------------------------------|------------------------------------------------------|
| Contribution to all virtual complex orbital:           |                                                      |
| "Occupied " virtual orbitals of fragment 1:            | 3.79% 30286.40%                                      |
| "Occupied " virtual orbitals of fragment 2:            | 10.76% 7099.05%                                      |
| $PL(1) + CT(1 \rightarrow 2) = 0.0757$ $PL(1) + CT(1)$ | $2 \rightarrow 1$ = 0.2721                           |
| $PL(2) + CT(1 \rightarrow 2) = 0.0189$ $PL(2) + CT(2)$ | $2 \rightarrow 1$ = 0.2153                           |
| The net electrons obtained by frag. $2 = CT($          | $1 \rightarrow 2$ - CT ( $2 \rightarrow 1$ = -0.1963 |
|                                                        |                                                      |

Contrib ution to all occupied complex orbital: "Occupied" virtual orbitals of fragment 1: 18897.14% 11.77% "Occupied" virtual orbitals of fragment 2: 2089.82% 1.27% Contribution to all virtual complex orbital : "Occupied" virtual orbitals of fragment 1: 2.86% 30288.23% "Occupied" virtual orbitals of fragment 2: 10.18% 7098.74% PL(1) + CT(1 -> 2) = 0.0571 PL(1) + CT(2->1) = 0.2354 PL(2) + CT(1-> 2) = 0.0253 PL(2) + CT(2->1) = 0.2036 The net electrons obtained by frag. 2 = CT(1-> 2) - CT(2->1) = -0.1783