Supporting Information

Rational inert-basal-plane activating design of ultrathin 1T' phase MoS_2 with

MoO₃ heterstructure for enhancing hydrogen evolution performances

Xiaoyi Xue,^a Jianan Zhang, ^{*,a,c} Ibrahim Saana Amiinu,^b Jian Sun,^a Qun Xu, ^{*,a} and Shichun Mu, ^{*,b}

^aCollege of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.

R. China. Emails: zjn@zzu.edu.cn (J. N. Zhang) and qunxu@zzu.edu.cn (Q. Xu)

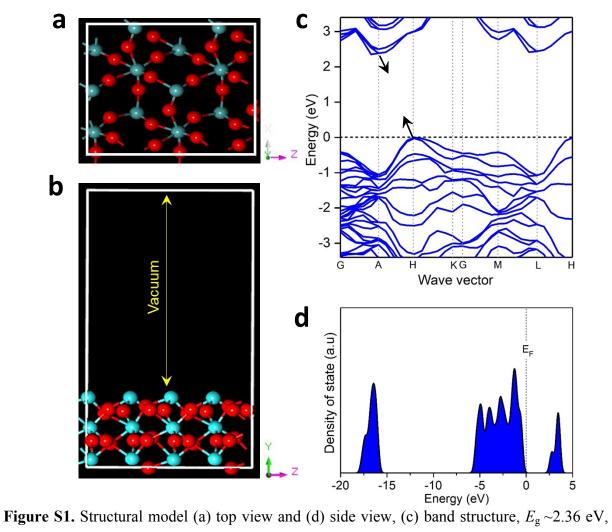
^bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Wuhan 430070, P. R. China, E-mail: msc@whut.edu.cn

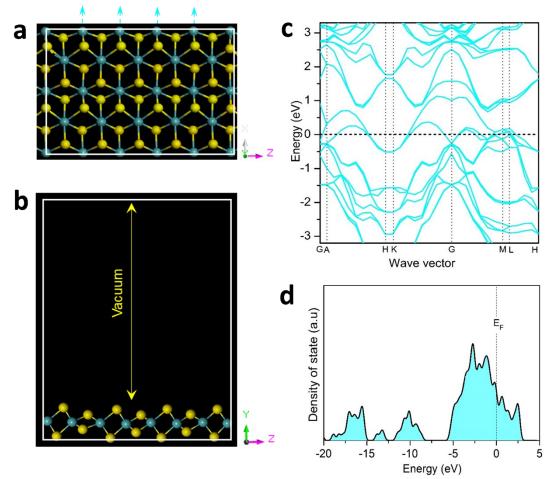
^cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai

University, Tianjin 30071, P. R. China

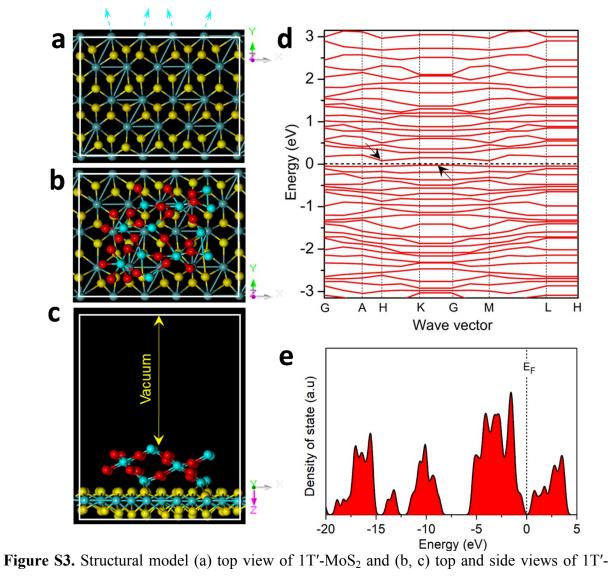
1. Theoretical calculation


Details of calculations: Density Functional Theory (DFT) computations were conducted using the Cambridge Sequential Total Energy Package (CASTEP) based on the plane wave pseudopotential method.¹ The geometrical structure of the (110) plane of 1T-MoS₂ and the (100) plane of MoO₃ were optimized using the generalized gradient approximation (GGA) methods. The Revised Perdew-Burke-Ernzerhof (RPBE) functional was used to treat the electron exchange correlation (EEC) interactions. The Brillouin zone was sampled using a Monkhorst Pack k-point grid of $3\times3\times1$ and a plane-wave basis set cut-off energy of 400 eV was applied. The cell structures were optimized for energy and force convergence threshold set at 30 meV/Å and 1.0×10^{-2} meV, respectively. A self-consistence field of 2.0×10^{-6} eV/atom and a vacuum space as large as 15.0 Å were applied to avoid periodic interactions. The ultra-soft pseudopotentials were applied for the valence electrons and ionic core interactions. To mimic the bulk properties, the top surface atomic layers were fully relaxed while the under layers remained constrained.

The Gibbs free energy (ΔG_{H^*}) of chemisorbed hydrogen was calculated as the energy difference between the reactant and reaction product, that is hydrogen-adsorbed on the catalyst system and the free-state catalyst and hydrogen. The final free energy was computed as:


$$\Delta G_{H^*} = E_{total} + E_{surf} - \frac{1}{2}E_{H2} + \Delta ZPE - T\Delta S$$

where the given symbols represent total energy (E_{total}) for adsorbed system, energy of the pure system (E_{surf}), change in zero-point-energy (ΔE_{ZPE}), the temperature of the system (T), and entropy change (ΔS), respectively. Herein, the vibrational entropy of hydrogen in the adsorbed state is approximated to be negligible such that $\Delta S_H \approx S_{H^*} - \frac{1}{2}S_{(H2)} \approx -\frac{1}{2}S_{(H2)}$, where $-\frac{1}{2}S_{(H2)}$ represents the entropy of hydrogen in the gas phase at standard conditions. The standard TS_(H2) is given to be ~0.41 eV for H₂ at 1 atm and 300 K.^{2,3} **Theoretical models:** The correlative models for the catalyst samples were built to simulate $1T-MoS_2$, MoO_3 and their heterostructure as shown in Figure S1-3. Typically, the (100) facet of $1T-MoS_2$ was modeled by the slab with layers of Mo-S bonded atoms while the (011) facet was adopted to generate the MoO_3 slab. To create the heterojunction model catalyst, the MoO_3 was laid on the $1T-MoS_2$ surface and optimized, and to avoid the effect of lattice mismatch, an interface periodicity of 3×2 supercell for $1T-MoS_2$ phase and 2×2 supercell for the MoO_3 phase were applied for creating the simulation model of the heterostructure. The lattice parameters for all model structures are given in Table S2. The optimized structure of $1T-MoS_2@MoO_x$ displays a slight distortion of the 1T-phase of MoS_2 facet after integrating the MoO_3 layer, resulting in a quasi- $1T-MoS_2$ phase in the heterostructure $(1T'-MoS_2/MoO_x)$.


2. Supplementary Figures and Tables

and (d) density of state of MoO₃. Atoms are O (red) and Mo (aqua).

Figure S2. Structural model (a) top view and (d) side view, (c) band structure, $E_g = 0.00 \text{ eV}$, and (d) density of state of 1T-MoS₂. Atoms are S (yellow) and Mo (aqua).

Figure S3. Structural model (a) top view of $1T'-MoS_2$ and (b, c) top and side views of $1T'-MoS_2/MoO_x$. (c) The band structure and (d) density of state of $1T'-MoS_2/MoO_x$. Atoms are O (red), Mo (aqua), and S (yellow).

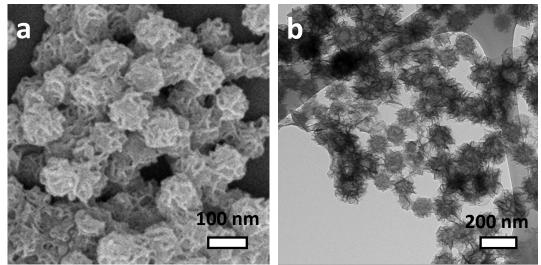


Figure S4. (a) SEM and (b) TEM images of HMHSs.

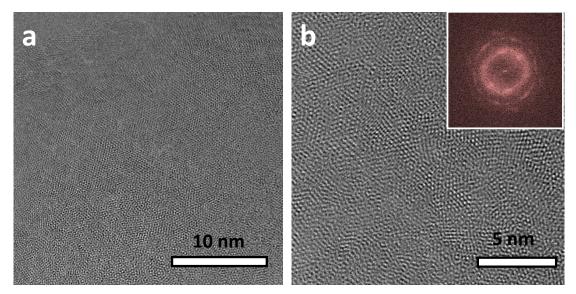


Figure S5. HRTEM images of HMHSs.

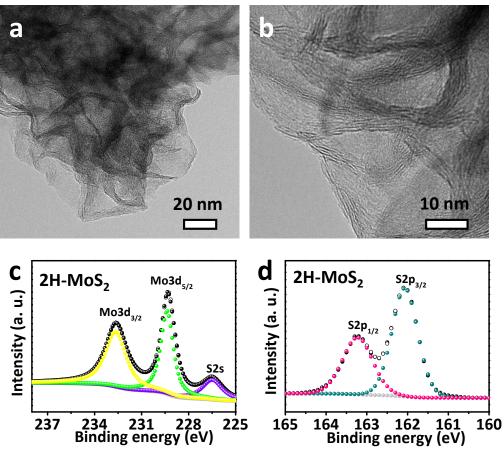


Figure S6. (a, b) TEM images of 2H-MoS₂, (c, d) high-resolution XPS spectra of Mo 3d, S 2p.

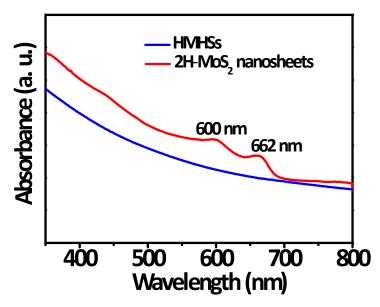


Figure S7. UV absorption spectra of HMHSs and 2H MoS₂ nanosheets.

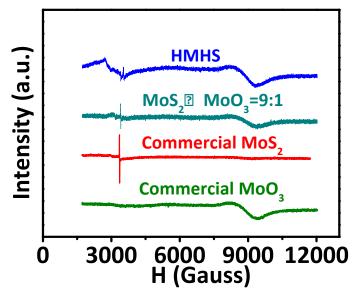



Figure S8. (a) EPR spectrum of HMHS, commercial MoS_2 , commercial MoO_3 , MoS_2 and MoO_3 mixture.

Figure S9. Static contact angle images. (a) Fresh HMHSs film. We measured the contact angle by drop casting a droplet of water (5 μ L) on the HMHSs film and obtained an angle of 45°. (b) Commercial MoS₂ film. The same experiments were done on the commercial MoS₂ films and an angle of 110° was found. These results confirm the hydrophilic surface of HMHSs and hydrophobic surface of commercial MoS₂. (c) Optical images of the HMHSs and commercial MoS₂ on Glass pieces

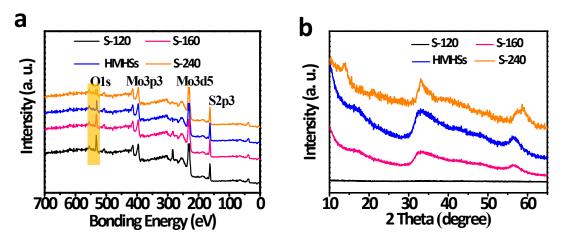


Figure S10. (a) XPS spectra and (b) XRD patterns of the S-120, S-160, HMHSs and S-240.

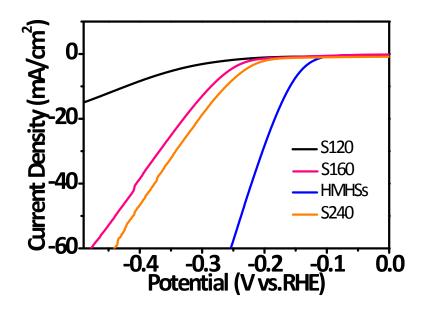


Figure S11. Polarization curves of Samples at different temperatures.

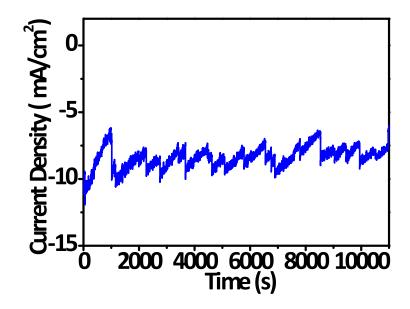
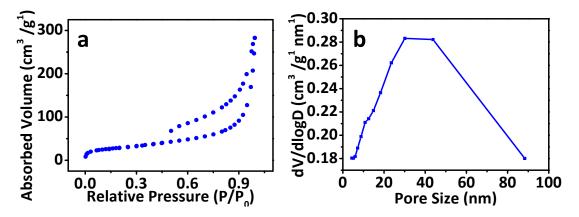



Figure S12. Time dependence of current density under static overpotential of 120 mV.

Figure S13. (a) BET nitrogen adsorption and desorption isotherms and (b) pore size distribution of the HMHSs.

Figure S14. Nyquist plots of electrochemical impedance spectra (EIS) of HMHSs and 2H-MoS₂ nanosheets. The *inset* is the equivalent electrical circuit.

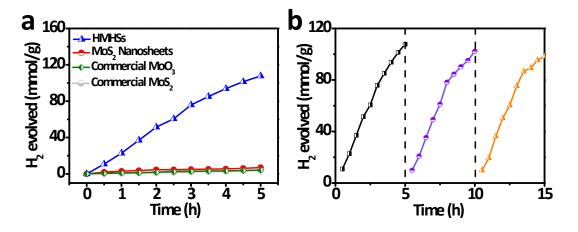


Figure S15. (a) Photocatalytic H_2 evolved of HMHS, MoS_2 nanosheets, commercial MoS_2 and MoO_3 . (b) Time course of H_2 evolved of HMHSs.

In photocatalytic hydrogen production test, the mixture of eosin, triethanolamine, and deionized water was applied as the reaction medium with 300 W xenon lamp as a light source. Figure S15a demonstrates the HMHSs evolved the highest H₂ production of 22.108 mmol g⁻¹ h⁻¹. For comparison, we also tested the hydrogen production properties of commercial MoS₂, MoS₂ nanosheets and MoO₃ nanosheets, HMHSs is 20 times higher than MoS₂ nanosheets, 27 times higher than commercial MoS₂ and 28 times higher than MoO₃ nanosheets. The stability test (Figure S15b) showed that the reduction in photocatalytic performance was negligible after 15 h of the reaction, suggesting its good durability. We hypothesize that good performance is due to the fact that nanospheres favors exposure to more active sites and the synergistic effect of molybdenum sulfide and molybdenum oxide. A more detailed explanation is as follows: While the metallic charater of 1T-MoS₂ may be good for enhancing electrical conductivity, it is unfavourable for the separation of photogenerated charge cariers. Similarly, the wide E_g of MoO₃ is unsuitable for enhancing electrocatalytic or photocatalytic properties due to it poor conductivity of ionic species. Interestingly, by coupling MoO₃ with 1T-MoS₂, utilizes the best properties of each component while mitigating their deficiencies, and thus realizes an effective enhancement of visible-light-driven H₂ evolution activity. What more,

the fascinating hollow structure of HMHSs provides a high BET surface area, which facilitates the exposure of more active sites to promote catalytic performance. To compare the catalytic activity of the HMHSs with those of the recently reported for Molybdenum sulfide-based catalytic, the hydrogen production rate and TOF are summarized in **Table S7**, which show our catalytic have a better catalytic capacity.

Models	HMHSs	MoO ₃	$1T-MoS_2$	bulk MoS ₂
$\Delta G(H^*)$	~0.126 eV	~0.488 eV	~0.283 eV	~0.34 eV

Table S1 The ΔG (H*) values of the H* adsorbed on the surface of different models.

Table S2 Lattice parameters (Å) of supercells for all model systems.

Model catalyst	a	b	C
MoO ₃	10.800	9.470	20.097
$1T-MoS_2$	15.815	11.245	23.477
$1T'-MoS_2/MoO_x$	16.001	11.245	28.124

Sample	Mo	S	0	Mass content	η at 5	
				of MoS_2 (%)	mA/cm ² (V)	
S-120	10.25	7.37	18.89	22.4	0.341	
S-160	10.12	10.88	14.04	37	0.253	
HMHSs	9.89	13.56	9.33	54	0.092	
S-240	9.77	18.24	1.23	98	0.232	

Table S3. Catalytic activity comparison samples with respect to $1T'-MoS_2/MoO_3$ with different mass ratios.

Catalyst	Catalyst	Tafel	Current	η at the	Ref.
	loading (mg cm ⁻²)	slope (mV dec ⁻¹)	density (j, mA cm ⁻²)	correspondi ng j (mV)	
HMHSs	<u>(ing ciri-)</u> 0.2	<u>42</u>	<u>10</u>	~109	In this work
пыпэз	0.2	42	10	~109	III UIIS WOLK
Ultrathin MoS ₂ Nanoplates	0.136	53	10	~155	ACS Appl. Mater. Interfaces 2013, 5, 12794
MoS ₂ nanosheets	0.0002	60	10	~250	Nat. Mater. 2013, 12, 850
Oxygen incorporated MoS ₂	0.285	55	10	~180	J. Am. Chem. Soc. 2013, 135, 17881
MoS ₂ nanosheets	0.05	40	10	~200	Nano Lett. 2013, 13, 6222
MoS_2 nanofilm	0.12	51	10	~235	Adv. Mater. 2014, 26, 2683
MoO ₂ - supported MoS ₂ nanosheets	0.22	76.1	10	~220	Nanoscale, 2015, 7, 5203
column-like MoS ₂ nanosheets	0.40	39	10	~200	Chem. Mater. 2016, 28, 2074
GCNF@MoS ₂	0.2	49.6	10	~200	Electrochim. Acta, 2016, 219, 604
Pt-MoS ₂	0.201	96	10	~210	Energy Environ. Sci., 2015, 8, 1594
MoO ₃ -MoS ₂ Nanowires	0.2	55	10	~310	Nano Lett. 2011, 11, 4168
graphene/MoS ₂	Ca. 1.86	47	50	~200	RSC Adv., 2016, 6, 31359

Table S4. Catalytic activity comparison of these nanoframes and the reported nanocatalysts.

Catalyst	Cycle number	η ₁₀ (mV)	IT test time (s)	IT test result	Ref.
HMHSs	3000	negligible decay	10000	Current density reduced by 8.6%	In this work
Ultrathin MoS ₂ Nanoplates	2000	negligible decay	-	- -	ACS Appl. Mater. Interfaces 2013, 5, 12794
WS ₂ nanosheets	10000	remain stable	-	-	Nat. Mater.
Oxygen incorporated MoS ₂	3000	negligible difference	20000	slight degradation	2013, 12, 850 J. Am. Chem. Soc. 2013, 135, 17881
MoS ₂ nanosheets	-	-	-	-	Nano Lett. 2013, 13, 6222
MoS_2 nanofilm	1000	remain stable	21000	stable high current density	<i>Adv. Mater.</i> 2014, 26, 2683
MoO ₂ - supported MoS ₂ nanosheets	1000	remained almost unchanged	36000	reduction currents remained almost invariant	Nanoscale, 2015, 7, 5203
column-like MoS ₂ nanosheets	1000	few changes	-	-	Chem. Mater. 2016, 28, 2074
GCNF@ MoS ₂	-	-	36000	Current density reduced by 18.7%	Electrochim. Acta, 2016, 219, 604
Pt-MoS ₂	5000	a very stable performanc e	-	-	Energy Environ. Sci., 2015, 8, 1594
MoO ₃ -MoS ₂ Nanowires	10000	No degradation	-	-	Nano Lett. 2011, 11, 4168
graphene/Mo S ₂	1000	little current lost	3000	reduction currents remained almost invariant	<i>RSC Adv.</i> , 2016, 6, 31359

Table S5. Catalytic durability comparison of these nanoframes and the reported nanocatalysts.

	<u> </u>	T C 1		1	
Catalyst	Catalyst	Tafel	Current	η at the	Ref.
	loading	slope (mV	density (j,	correspondi	
	(mg cm^{-2})	dec ⁻¹)	$mA \text{ cm}^{-2}$	ng j (mV)	
HMHSs	0.2	42	10	~109	In this work
①MoS ₂ nanomesh	0.28	46	10	~160	10.1016/j.apcatb.20 18.05.080
②NiCoMo film	-	65.3	10	~35	ACS Appl. Mater. Interfaces, 2017, 9, 22420
③MoSe ₂ / MoO ₂ /Mo	-	48.9	10	~142	Small 2018, 14, 1703798
(4)MoP/CNT- 700	0.5	60	10	~83	Adv. Funct. Mater. 2018, 28, 1706523
⑤NC-Co _{0.85} Se	0.57	34.1	30	~210	Electrochim. Acta, 2017, 247, 468
[®] WxC/NG-10	0.5659	45.91	10	~77.82	Electrochim. Acta, 2017, 251, 660
⑦C-WP/W	-	79.8	10	~109	Chem. Eng. J., 2017, 327, 705
(8)GNS	0.28	35.8	25	~ 290	Electrochim. Acta, 2018, 283, 1146e1153
9 Petaloid FeP/C	0.28	57	10	~ 110	Electrochem. Commun., 2018, 92, 33
⁽¹⁾ ZnSe/MoSe ₂	0.75	73	10	~ 200	Adv. Mater. Interfaces, 2017, 1700948

Table S6. Catalytic activity comparison of the HMHSs, molybdenum compounds and other

 non-precious metal catalysts.

Photocatalyst	Light source	Activity[mmolg ⁻ ¹ h ⁻¹]	TOF ^[a] [h ⁻¹]	Ref.
HMHS	300 W Xe lamp	22	5.25	In this work
Colloidal MoS ₂	300 W Xe lamp	-	6	Chem. Commun. 2009, 0, 4536.
MoS ₂ /CdS	300 W Xe lamp	5.3	ca. 0.7	J. Am. Chem. Soc. 2008, 130, 7176
CdSe-MoS ₂	300 W Xe lamp	0.8	ca. 0.15	J. Phys. Chem. C 2010, 114, 10628
MoS ₂ /SiO ₂	Hg Lamp	0.86	ca. 0.14	J. Catal. 1991, 131, 156
MoS_2/TiO_2	300 W Xe lamp	0.03	ca. 0.005	J. Colloid Interface Sc. 2011, 354, 607
TiO ₂ /MoS ₂ /graphene	300 W Xe lamp	2.1	ca. 0.35	J. Am. Chem. Soc. 2012, 134, 6575
MoS _x C _y	300 W Xe lamp	19	ca. 0.3	Dalton Trans. 2013,42, 1287
MoS ₂ /RGO	300 W Xe lamp	4.19	1.00	J. Phys. Chem. C 2012, 116, 25415
p-MoS ₂ /n-RGO	300 W Xe lamp	0.025	0.006	J. Am. Chem. Soc. 2013, 135, 10286
MoS_2/TiO_2	300 W Xe lamp	0.75	0.18	Phys. Chem. Chem. Phys. 2015, 17, 933
TiO ₂ /MoS ₂ /G	350 W Xe lamp	2.07	0.49	J. Am. Chem. Soc., 2012, 134 (15), pp 6575
$TiO_2@MoS_2$	300 W Xe lamp	1.68	0.40	Appl. Catal. B 2015, 164, 1
1T MoS ₂	100 W halogen	26	6.2	Angew. Chem. Int. Ed. 2013, 52, 13057
MoS ₂ -NH ₃	150 W halogen	0.171	0.04	J. Alloy Compd. 2016, 688, 368

Table S7. Activity of catalyst in terms of yield of H_2 evolved and TOF.

References

1. M. Segall, P. J. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark and M. Payne, *J. Phys. Condens. Matter*, 2002, **14**, 2717-2744.

2. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, **152**, J23-J26.

3. Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Angew. Chem. Int. Ed.*, 2015, **54**, 10752-10757.