Supplementary Information

Ultrahigh Photoresponsivity UV Photodetector

Based on BP/ReS₂ Heterostructure p-n Diode

Shiwei Cao^{1, 2}, Yanhui Xing¹, Jun Han¹, Xin Luo², Wenxing Lv², Weiming Lv², Baoshun

Zhang², and Zhongming Zeng²

¹Key Lab of Opto-electronics Technology, Ministry of Education, College of Microelectronics,

Beijing University of Technology, Beijing 100124, P. R. China.

²Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-

bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123, China

CORRESPONDING AUTHOR

¹xingyanhui@bjut.edu.cn, ²zmzeng2012@sinano.ac.cn

Figure S1 The ln(I) versus V_{ds} plot for extracting the device ideality factor.

The diode ideality factor can be calculated from a plot of the logarithmic output characteristics at the forward bias based on the following equation:

$$I = I_{sat} \left[exp \left(\frac{qV}{nk_B T} \right) - 1 \right]$$

Where *I* is the diode current, *V* is the applied voltage, I_{sat} is reverse saturation current, *n* is the ideality factor, *T* is the temperature, *q* is elementary charge, and $k_{\rm B}$ is the Boltzmann's constant. For voltage greater than a few $k_{\rm B}T$ (e.g., > 0.1V), the " – 1" term in the above equation can be equation gives the following equation:

$$\ln\left(I\right) = \ln\left(I_{sat}\right) + \left(\frac{q}{nk_BT}\right)V$$

When plotting the natural logarithm of the diode current *versus* the applied voltage based on the above equation, the slope gives q/nk_BT .

Figure S2 Energy band diagrams of the Ni/BP junction at (a) negative and (b) positive bias voltage. Schematics of the band alignments when (c) negative and (d) positive back gate voltage

is applied.

Material	Measurement condition				Responsivity	Deference
	$V_{\rm ds}({ m V})$	$V_{g}(V)$	$\lambda(nm)$	Р	<i>R</i> (A/W)	Kelelelice
ReS_2/MoS_2	2	0	532	$30.6 \ \mu W/cm^2$	35.07	1
ReS ₂	1	0	532	0.56 mW/cm^2	0.98	2
ReS_2 hexagon	0.5	0	500	3.11 mW/cm ²	604	3
ReS ₂ (lateral PN)	-2	0	660	3.11 mW/cm ²	0.14	4
ReS ₂ (O ₂ -plasma)	5	30	405	5 pW	2.5×10 ⁷	5
ReS ₂	2.1	50	633	25 nW	16.14	6
ReS ₂	4	-50	532	6 pW	88600	7
BP-on-WSe ₂	0.5	0	637	1 mW/cm^2	10 ³	8
BP/MoS ₂	3	0	532	1 nW	22.3	9
BP/MoS ₂	2	0	633	1 µW	3.54	10
BP	0.3	-4	3390	16.5 W/cm ²	82	11
BP/OTS	-0.1	-40	520	0.5 mW/cm^2	1.4×10 ⁴	12
WS ₂ /BP	5	0	532	44.2 mW/cm ²	120m	13
BP/Graphene	1	0	1550	11 nW	3.3×10 ³	14
BP/ReS ₂	1	0	365	0.55 mW/cm^2	4120	This work

Table S1. Comparison of the key parameters of our device to the reported BP and ReS_2 -based photodetectors.

REFERENCES

- M. Zhao, W. Zhang, M. Liu, C. Zou, K. Yang, Y. Yang, Y. Dong, L. Zhang and S. Huang, *Nano Res.*, 2016, 9, 3772-3780.
- 2 J.-K. Qin, W.-Z. Shao, Y. Li, C.-Y. Xu, D.-D. Ren, X.-G. Song and L. Zhen, *Rsc. Adv.*, 2017, 7, 24188-24194.
- 3 M. Hafeez, L. Gan, H. Li, Y. Ma and T. Zhai, Adv. Funct. Mater., 2016, 26, 4551-4560.
- 4 M. Najmzadeh, C. Ko, K. Wu, S. Tongay and J. Wu, Appl. Phys. Express, 2016, 9, 055201.
- 5 J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song and J. H. Park, *Adv. Mater.*, 2016, 28, 6985-6992.
- 6 E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, W. Hu and F. Xiu, Adv. Funct. Mater., 2015, 25, 4076-4082.
- 7 E. Liu, M. Long, J. Zeng, W. Luo, Y. Wang, Y. Pan, W. Zhou, B. Wang, W. Hu, Z. Ni, Y. You, X. Zhang, S. Qin, Y. Shi, K. Watanabe, T. Taniguchi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao and D. Xing, *Adv. Funct. Mater.*, 2016, 26, 1938-1944.
- 8 L. Ye, P. Wang, W. Jin Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu and W. Hu, Nano Energy, 2017. 37, 53-60.
- 9 L. Ye, H. Li, Z. Chen and J. Xu, ACS Photonics, 2016, 3, 692-699.
- 10 Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu and P. D. Ye, ACS Nano, 2014, 8, 8292-8299.
- 11 Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller and F. Xia, *Nano Lett.*, 2016, **16**, 4648-4655.
- 12 D.-H. Kang, M. H. Jeon, S. K. Jang, W.-Y. Choi, K. N. Kim, J. Kim, S. Lee, G. Y. Yeom and J.-H. Park, *ACS Photonics*, 2017, **4**, 1822-1830.
- 13 Z. Jia, J. Xiang, C. Mu, F. Wen, R. Yang, C. Hao and Z. Liu, J. Mater. Sci., 2017, 52, 11506-11512.
- 14 Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C. W. Qiu, S. Li and Q. Bao, ACS Appl. Mater. Inter., 2017, 9, 36137-36145.