Supporting Information

Discovery of a novel spin-polarized Nodal ring in two-dimensional HK lattice

Liang Zhang,¹ Shu-feng Zhang,¹Wei-xiao Ji,¹ Chang-wen Zhang,^{1*} Ping Li,¹Pei-ji Wang ¹, Sheng-shi Li,² and Shi-shen Yan^{2*}

¹ School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China

² School of Physics, State Key laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

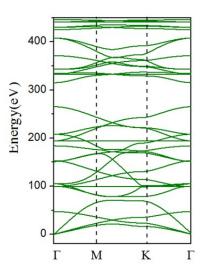


Fig. S1 Calculated phonon band dispersions of Mn-Cyanogen lattice. No appreciable imaginary phonon modes are observed, indicating that the Mn-Cyanogen lattice is kinetically stable.

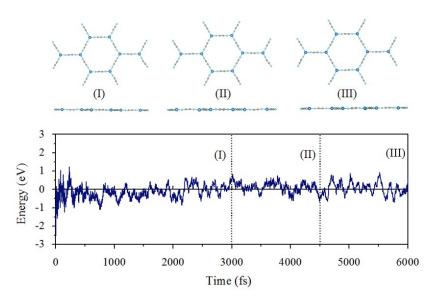


Fig. S2 Snapshot of atomic *configurations* of Mn-Cyanogen lattice at the end of the MD simulation at 3, 3.5 and 6 ps, respectively. Also, the total potential energy fluctuation during MD simulations at 300 K is shown. Note that the structure of the Mn-Cyanogen lattice does not collapse up to 300 K, indicating that the melting point of Mn-Cyanogen lattice is probably at 300 K.

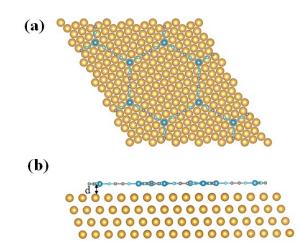


Fig. S3 Epitaxial synthesized Mn-Cyanogen lattice on Au(111) substrate. We find that the calculated adhesion energy between Mn-Cyanogen and Au (111) substrate is -3.164 eV/atom, which is comparable with those of the experimentally synthesized 2D films, such as silicene and α - boron on Ag(111) substrate. Therefore, it is expected that the Mn-Cyanogen lattice can be synthesized by the pathway similar to those of other 2D materials on the Ag (111) substrate.

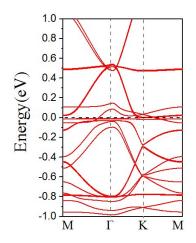


Fig. S4 Calculated band structures of Cyanogen-Mn lattice as the FM ground state has the in-plane spin orientation.