Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018 ## **Electronic Supplementary Information** ## Low-temperature wafer-scale synthesis of two-dimensional SnS₂ Jung Joon Pyeon,^{a,b} In-Hwan Baek,^{a,c} Weon Cheol Lim,^d Keun Hwa Chae,^d Seong Ho Han,^e Ga Yeon Lee,^e Seung-Hyub Baek,^a Jin-Sang Kim,^a Ji-Won Choi,^a Taek-Mo Chung,^e Jeong Hwan Han,^f Chong-Yun Kang,^{a,b} Seong Keun Kim*^a ^a Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Korea ^b KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea ^c Department of Materials Science and Engineering, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea ^d Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Korea ^e Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea f Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea Fig. S1 (a) Variation in the SnO thickness as a function of number of ALD cycles and (b) Variation in the SnS_2 thickness as a function of the SnO thickness. Fig. S2 XPS spectra of Sn 3d core level in the SnO and SnO_2 thin films grown by ALD. **Fig. S3** Variation in the Sn layer density of the SnO and SnO_2 sulfurized at 350 °C as a function of the sulfurization time. The Sn layer density was measured using WDXRF. **Fig. S4** MEIS spectrum for the 3 nm-thick SnO grown on $Al_2O_3/SiO_2/Si$ sulfurized at 350 °C for 60 min. Fig. S5 (a) Sn 3d XPS spectra and (b) θ -2 θ XRD patterns of the ALD-grown SnO on amorphous Al₂O₃ and SiO₂. Fig. S6 Optical images of water droplet on (a) amorphous SiO_2 and (b) Al_2O_3 .