Electronic Supplementary Information

Enhanced luminescence and energy transfer in Mn²⁺ doped CsPbCl_{3-x}Br_x perovskite nanocrystals

Liling Fei,^a Xi Yuan,^{*a} Jie Hua,^a Michio Ikezawa,^b Ruosheng Zeng,^c Haibo Li,^a

Yasuaki Masumoto,^b and Jialong Zhao*a

^aKey Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China ^bInstitute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan ^cSchool of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China

Fig. S1 The typical EDX spectra of Mn^{2+} :CsPbCl_{2.38}Br_{0.62} NCs. The atomic ratios of Cl/Br in various Mn^{2+} :CsPbCl_{3-x}Br_x NCs determined by EDX were summarized in Table S1.

Fig. S2 Transmission electron microscope (TEM) and high-resolution transmission electron microscopy (HRTEM) images of Mn²⁺ doped CsPbCl₃ (a), CsPbCl_{2.15}Br_{0.85} (b), CsPbCl_{1.68}Br_{1.32} (c), CsPbCl_{0.78}Br_{2.22} (d).

Fig. S3 Temperature-dependent PL spectra of $Mn^{2+}:CsPbCl_{2.38}Br_{0.62}$ (a) and $Mn^{2+}:CsPbCl_{1.68}Br_{1.32}$ (b) and $Mn^{2+}:CsPbCl_{1.47}Br_{1.53}$ NC films (c). PL decay curves of Mn^{2+} in $Mn^{2+}:CsPbCl_{2.38}Br_{0.62}$ (d) and $Mn^{2+}:CsPbCl_{1.68}Br_{1.32}$ (e) and $Mn^{2+}:CsPbCl_{1.68}Br_{1.32}$ (e) and $Mn^{2+}:CsPbCl_{1.47}Br_{1.53}$ NC films (f).

Fig. S4 Temperature dependent peak energy (a) and linewidth (b) of Mn^{2+} emissions in Mn^{2+} :CsPbCl_{3-x}Br_x NC films.

Table S1 Atomic ratios of Cl/Br in various $Mn^{2+}:CsPbCl_{3-x}Br_x$ NCs determined by EDX. The composition x of Br anions was varied by Cl-to-Br anion exchange strategy by adding different volume of PbBr₂ precursor solution into $Mn^{2+}:CsPbCl_3$ NC solution.

Volume of PbBr ₂	Atomic ratio	Element composition
precursor solution	of Cl/Br	
0.2 mL	3.84	Mn ²⁺ :CsPbCl _{2.38} Br _{0.62}
0.6 mL	2.53	$Mn^{2+}:CsPbCl_{2.15}Br_{0.85}$
1.0 mL	1.27	$Mn^{2+}:CsPbCl_{1.68}Br_{1.32}$
1.6 mL	0.96	$Mn^{2+}:CsPbCl_{1.47}Br_{1.53}$
2.0 mL	0.35	Mn ²⁺ :CsPbCl _{0.78} Br _{2.22}
4.0 mL	0.12	Mn ²⁺ :CsPbCl _{0.32} Br _{2.68}

Table S2 Analytical Mn^{2+} concentrations (relative to Pb^{2+} ions) in various Mn^{2+} :CsPbCl_{3-x}Br_x NCs, determined by ICP-MS.

Element composition	Mn ²⁺ concentration
Mn ²⁺ :CsPbCl _{2.38} Br _{0.62}	2.5%
Mn ²⁺ :CsPbCl _{2.15} Br _{0.85}	2.2%
Mn ²⁺ :CsPbCl _{1.68} Br _{1.32}	2.5%
Mn ²⁺ :CsPbCl _{1.47} Br _{1.53}	2.9%
Mn ²⁺ :CsPbCl _{0.78} Br _{2.22}	2.8%
Mn ²⁺ :CsPbCl _{0.32} Br _{2.68}	2.2%